研究生: |
龔靖雅 Gong, Jing-Ya |
---|---|
論文名稱: |
製備搭載阿黴素/硫辛酸之固態脂質奈米粒子以提升大腸直腸癌的化療效果 Development of Doxorubicin/α-lipoic acid Co-loaded Solid Lipid Nanoparticles for Chemotherapy against Colorectal Cancer |
指導教授: |
邱信程
Chiu, Hsin-Cheng |
口試委員: |
張建文
Chang, Chien-Wen 姜文軒 Chiang, Wen-Hsuan |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2023 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 阿黴素 、硫辛酸 、固態脂質奈米粒子 、大腸直腸癌 、化學治療 |
外文關鍵詞: | doxorubicin, α-lipoic acid, solid lipid nanoparticles, colorectal cancer, chemotherapy |
相關次數: | 點閱:54 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用固態脂質奈米粒子作為奈米載體,並同時搭載化療藥物阿黴素 (DOX, doxorubicin) 以及p53穩定藥物硫辛酸 (LA, α-lipoic acid) 用於大腸直腸癌的化學治療,透過結合化學治療與穩定p53蛋白以促進細胞凋亡的產生,進而提升大腸直腸癌的化療效果。
研究中以二次乳化法製備固態脂質奈米粒子,並將DOX及LA結合所形成的複合物 (Complex) 包覆於奈米粒子的疏水核心中,並藉由靜電作用力於表層修飾上mouse serum albumin (MSA)。在細胞實驗中,透過螢光顯微鏡顯示奈米載體可透過胞吞作用進到CT26細胞內,並於溶酶體中瓦解釋放出搭載的化療藥物DOX。在細胞毒性測試中證明在同樣濃度的藥物之下,同時搭載DOX及LA能達到更好的細胞毒殺效果,並且透過觀察p53蛋白的表達、細胞凋亡蛋白的活化,以及GSK-3β的表現,證明研究中所使用的硫辛酸能夠穩定p53,降低大腸癌細胞對於化學治療上的抗拒性,進而增強化學治療的效果。未來如有機會應用在大腸癌的動物模型上,則可針對MSA修飾的標靶特性探討其可靶向腫瘤血管組織的假設,並期望有更好的細胞攝取載體的能力。
Colorectal cancer stands as one of the most common cancer and second most deadly cancer worldwide. Numerous studies on the therapeutic effectiveness of nanoparticles against colorectal cancer have been reported. However, effective and efficient treatment method is still not available. One of the main issues with chemotherapy for colorectal cancer (CRC) is therapy resistance which severely reduces treatment effectiveness and affects patients' prognoses. α-lipoic acid in combination with chemotherapy drugs is shown to have synergistic effect against tumors by reducing therapy resistance. In this study, we develop a solid lipid nanoparticle-based drug delivery system for treating colorectal cancer by co-loading chemotherapeutic drug doxorubicin (DOX) and α-lipoic acid (LA) as a p53 stabilizer. Our study proved enhanced effectiveness of chemotherapy by combining doxorubicin with α-lipoic acid, synergistically promoting cell apoptosis. The solid lipid nanoparticles were prepared by a double emulsion method. The hydrophobic core of the nanoparticles was loaded with the complex that formed by binding DOX and LA, further we use mouse serum albumin (MSA) to modify the surface of our nanoparticles to achieve colloidal stability.
Doxorubicin/α-lipoic acid co-loaded solid lipid nanoparticles (DLSLNs) enter CT26 cells via endocytosis and release DOX within the lysosomes. Cell viability assay proved that the co-loading of DOX and LA achieved better cytotoxic effects at the same DOX concentration. This result was further supported by the expression of the p53 protein, activation of apoptosis-related proteins, and the expression of GSK-3β. The use of α-lipoic acid in this study stabilizes the p53 protein, reduces resistance of colorectal cancer cells to chemotherapy, and enhances the efficacy of chemotherapy. Further this study is aimed to investigate the targeting properties of MSA modified nanoparticles and to achieve improved cellular uptake and its anticancer properties for targeting tumor vascular tissue. This nanotherapeutic system holds a potential to be used in animal model.
1. Granados-Romero, J.J., et al., Colorectal cancer: a review. Int J Res Med Sci, 2017. 5(11): p. 4667.
2. 110年國人死因統計結果. https://dep.mohw.gov.tw/DOS/lp-5069-113-xCat-y110.html.
3. Hu, T., et al., Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World journal of gastroenterology, 2016. 22(30): p. 6876.
4. Li, X.-L., et al., P53 mutations in colorectal cancer-molecular pathogenesis and pharmacological reactivation. World journal of gastroenterology: WJG, 2015. 21(1): p. 84.
5. Zhao, P., et al., Roles of albumin‐binding proteins in cancer progression and biomimetic targeted drug delivery. ChemBioChem, 2018. 19(17): p. 1796-1805.
6. What Is Cancer ? https://www.cancer.gov/about-cancer/understanding/what-is-cancer.
7. Patel, A., Benign vs malignant tumors. JAMA oncology, 2020. 6(9): p. 1488-1488.
8. Ahmed, M., Colon cancer: a clinician’s perspective in 2019. Gastroenterology research, 2020. 13(1): p. 1.
9. Center, M.M., et al., Worldwide variations in colorectal cancer. CA: a cancer journal for clinicians, 2009. 59(6): p. 366-378.
10. Stages and subtypes of colorectal cancer. https://www.facingourrisk.org/info/risk-management-and-treatment/cancer-treatment/by-cancer-type/colorectal/stages-and-subtypes.
11. Siegel, R.L., et al., Colorectal cancer statistics, 2020. CA: a cancer journal for clinicians, 2020. 70(3): p. 145-164.
12. Gill, S., R. Thomas, and R. Goldberg, Colorectal cancer chemotherapy. Alimentary pharmacology & therapeutics, 2003. 18(7): p. 683-692.
13. Berg, D. Managing the side effects of chemotherapy for colorectal cancer. in Seminars in oncology. 1998.
14. Bejarano, L., M.J. Jordāo, and J.A. Joyce, Therapeutic targeting of the tumor microenvironment. Cancer discovery, 2021. 11(4): p. 933-959.
15. Wu, P., et al., Adaptive mechanisms of tumor therapy resistance driven by tumor microenvironment. Frontiers in cell and developmental biology, 2021. 9: p. 641469.
16. Whiteside, T., The tumor microenvironment and its role in promoting tumor growth. Oncogene, 2008. 27(45): p. 5904-5912.
17. Trédan, O., et al., Drug resistance and the solid tumor microenvironment. Journal of the National Cancer Institute, 2007. 99(19): p. 1441-1454.
18. Bukowski, K., M. Kciuk, and R. Kontek, Mechanisms of multidrug resistance in cancer chemotherapy. International journal of molecular sciences, 2020. 21(9): p. 3233.
19. Behranvand, N., et al., Chemotherapy: A double-edged sword in cancer treatment. Cancer immunology, immunotherapy, 2022. 71(3): p. 507-526.
20. Srikantan, S., et al., Translational control of TOP2A influences doxorubicin efficacy. Molecular and cellular biology, 2011. 31(18): p. 3790-3801.
21. Fernald, K. and M. Kurokawa, Evading apoptosis in cancer. Trends in cell biology, 2013. 23(12): p. 620-633.
22. Thorn, C.F., et al., Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenetics and genomics, 2011. 21(7): p. 440.
23. Kciuk, M., et al., Doxorubicin—An Agent with Multiple Mechanisms of Anticancer Activity. Cells, 2023. 12(4): p. 659.
24. Doxorubicin. https://www.glpbio.com/doxorubicin.html.
25. Bhirde, A.A., et al., Targeted therapeutic nanotubes influence the viscoelasticity of cancer cells to overcome drug resistance. ACS nano, 2014. 8(5): p. 4177-4189.
26. Lyman, G.H., Impact of chemotherapy dose intensity on cancer patient outcomes. Journal of the National Comprehensive Cancer Network, 2009. 7(1): p. 99-108.
27. Maeda, H. and M. Khatami, Analyses of repeated failures in cancer therapy for solid tumors: poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clinical and translational medicine, 2018. 7: p. 1-20.
28. Blandino, G. and S. Di Agostino, New therapeutic strategies to treat human cancers expressing mutant p53 proteins. Journal of Experimental & Clinical Cancer Research, 2018. 37: p. 1-13.
29. Oren, M., Decision making by p53: life, death and cancer. Cell Death & Differentiation, 2003. 10(4): p. 431-442.
30. Lin, R.-W., et al., P53 enhances apoptosis induced by doxorubicin only under conditions of severe DNA damage. Cell Cycle, 2018. 17(17): p. 2175-2186.
31. Liebl, M.C. and T.G. Hofmann, The role of p53 signaling in colorectal cancer. Cancers, 2021. 13(9): p. 2125.
32. Xue, W., et al., Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature, 2007. 445(7128): p. 656-660.
33. Ventura, A., et al., Restoration of p53 function leads to tumour regression in vivo. Nature, 2007. 445(7128): p. 661-665.
34. Martins, C.P., L. Brown-Swigart, and G.I. Evan, Modeling the therapeutic efficacy of p53 restoration in tumors. Cell, 2006. 127(7): p. 1323-1334.
35. Vazquez, A., et al., The genetics of the p53 pathway, apoptosis and cancer therapy. Nature reviews Drug discovery, 2008. 7(12): p. 979-987.
36. Marcus, J.M., et al., Loss of p53 expression in cancer cells alters cell cycle response after inhibition of exportin-1 but does not prevent cell death. Cell Cycle, 2018. 17(11): p. 1329-1344.
37. Ozaki, T. and A. Nakagawara, Role of p53 in cell death and human cancers. Cancers, 2011. 3(1): p. 994-1013.
38. Kruse, J.-P. and W. Gu, Modes of p53 regulation. Cell, 2009. 137(4): p. 609-622.
39. Shangary, S., et al., Reactivation of p53 by a specific MDM2 antagonist (MI-43) leads to p21-mediated cell cycle arrest and selective cell death in colon cancer. Molecular cancer therapeutics, 2008. 7(6): p. 1533-1542.
40. Lambert, J.M., et al., PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer cell, 2009. 15(5): p. 376-388.
41. Bykov, V.J., et al., PRIMA-1MET synergizes with cisplatin to induce tumor cell apoptosis. Oncogene, 2005. 24(21): p. 3484-3491.
42. Fan, Y., et al., Recombinant dual-target MDM2/MDMX inhibitor reverses doxorubicin resistance through activation of the TAB1/TAK1/p38 MAPK pathway in wild-type p53 multidrug-resistant breast cancer cells. Journal of Cancer, 2020. 11(1): p. 25.
43. Cao, L., et al., Chidamide combined with doxorubicin induced p53-driven cell cycle arrest and cell apoptosis reverse multidrug resistance of breast cancer. Frontiers in Oncology, 2021. 11: p. 614458.
44. Alpha-lipoic acid. https://www.mountsinai.org/health-library/supplement/alpha-lipoic-acid.
45. Lv, S.-y., et al., Review of lipoic acid: from a clinical therapeutic agent to various emerging biomaterials. International Journal of Pharmaceutics, 2022: p. 122201.
46. Vallianou, N., A. Evangelopoulos, and P. Koutalas, Alpha-lipoic acid and diabetic neuropathy. The review of diabetic studies: RDS, 2009. 6(4): p. 230.
47. Maschio, M., et al., Prevention of bortezomib-related peripheral neuropathy with docosahexaenoic acid and α-lipoic acid in patients with multiple myeloma: preliminary data. Integrative Cancer Therapies, 2018. 17(4): p. 1115-1124.
48. Abubaker, S.A., et al., Effect of alpha-lipoic acid in the treatment of diabetic neuropathy: a systematic review. Cureus, 2022. 14(6).
49. Jiang, S., et al., α-Lipoic acid attenuates LPS-induced cardiac dysfunction through a PI3K/Akt-dependent mechanism. International immunopharmacology, 2013. 16(1): p. 100-107.
50. (±)-α-Lipoic acid. https://www.sigmaaldrich.com/TW/en/product/sigma/t1395.
51. Michikoshi, H., et al., α-Lipoic acid-induced inhibition of proliferation and met phosphorylation in human non-small cell lung cancer cells. Cancer Letters, 2013. 335(2): p. 472-478.
52. Novotny, L., P. Rauko, and C. Cojocel, Alpha-lipoic acid-the potential for use in cancer therapy minireview. NEOPLASMA-BRATISLAVA-, 2008. 55(2): p. 81.
53. Yang, Y., et al., The antioxidant alpha-lipoic acid inhibits proliferation and invasion of human gastric cancer cells via suppression of STAT3-mediated MUC4 gene expression. Oxidative Medicine and Cellular Longevity, 2019. 2019.
54. Attia, M., et al., An overview of the antioxidant effects of ascorbic acid and alpha lipoic acid (in liposomal forms) as adjuvant in cancer treatment. Antioxidants, 2020. 9(5): p. 359.
55. Yoo, T.-H., et al., α-Lipoic acid prevents p53 degradation in colon cancer cells by blocking NF-κB induction of RPS6KA4. Anti-Cancer Drugs, 2013. 24(6): p. 555-565.
56. Sun, T., et al., Engineered nanoparticles for drug delivery in cancer therapy. Nanomaterials and Neoplasms, 2021: p. 31-142.
57. Maji, I., et al., Solid self emulsifying drug delivery system: Superior mode for oral delivery of hydrophobic cargos. Journal of Controlled Release, 2021. 337: p. 646-660.
58. Bahrami, B., et al., Nanoparticles and targeted drug delivery in cancer therapy. Immunology letters, 2017. 190: p. 64-83.
59. Shah, A., et al., Nanocarriers for targeted drug delivery. Journal of Drug Delivery Science and Technology, 2021. 62: p. 102426.
60. Li, Z., et al., Cancer drug delivery in the nano era: An overview and perspectives. Oncology reports, 2017. 38(2): p. 611-624.
61. Byrne, J.D., T. Betancourt, and L. Brannon-Peppas, Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced drug delivery reviews, 2008. 60(15): p. 1615-1626.
62. Bazak, R., et al., Cancer active targeting by nanoparticles: a comprehensive review of literature. Journal of cancer research and clinical oncology, 2015. 141: p. 769-784.
63. Pérez-Herrero, E. and A. Fernández-Medarde, Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. European journal of pharmaceutics and biopharmaceutics, 2015. 93: p. 52-79.
64. Raj, S., et al. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. in Seminars in cancer biology. 2021. Elsevier.
65. Sutradhar, K.B. and M.L. Amin, Nanotechnology in cancer drug delivery and selective targeting. International scholarly research notices, 2014. 2014.
66. Peres, L.B., et al., Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique. Colloids and Surfaces B: Biointerfaces, 2016. 140: p. 317-323.
67. Weber, S., A. Zimmer, and J. Pardeike, Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics, 2014. 86(1): p. 7-22.
68. Bayón-Cordero, L., I. Alkorta, and L. Arana, Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials, 2019. 9(3): p. 474.
69. Mehnert, W. and K. Mäder, Solid Lipid Nanoparticles: Production, Characterization and Applications. Ad-vanced Drug Delivery Reviews, 47, 165-196. 2001.
70. Zhang, Z., S. Tan, and S.-S. Feng, Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials, 2012. 33(19): p. 4889-4906.
71. Luiz, M.T., et al., The use of TPGS in drug delivery systems to overcome biological barriers. European Polymer Journal, 2021. 142: p. 110129.
72. Constantinou, C., C. Charalambous, and D. Kanakis, Vitamin E and cancer: an update on the emerging role of γ and δ tocotrienols. European journal of nutrition, 2020. 59(3): p. 845-857.
73. Mardones, P. and A. Rigotti, Cellular mechanisms of vitamin E uptake: relevance in α-tocopherol metabolism and potential implications for disease. The Journal of Nutritional Biochemistry, 2004. 15(5): p. 252-260.
74. Jahanban-Esfahlan, A., et al., Recent developments in the detection of bovine serum albumin. International journal of biological macromolecules, 2019. 138: p. 602-617.
75. Kratz, F., A clinical update of using albumin as a drug vehicle—A commentary. Journal of controlled release, 2014. 190: p. 331-336.
76. Wei, X.-Q. and K. Ba, Construction a long-circulating delivery system of liposomal curcumin by coating albumin. ACS omega, 2020. 5(27): p. 16502-16509.
77. Gualbert, J., P. Shahgaldian, and A.W. Coleman, Interactions of amphiphilic calix [4] arene-based solid lipid nanoparticles with bovine serum albumin. International journal of pharmaceutics, 2003. 257(1-2): p. 69-73.
78. Taguchi, K., et al., When albumin meets liposomes: A feasible drug carrier for biomedical applications. Pharmaceuticals, 2021. 14(4): p. 296.
79. Caracciolo, G., Liposome–protein corona in a physiological environment: challenges and opportunities for targeted delivery of nanomedicines. Nanomedicine: Nanotechnology, Biology and Medicine, 2015. 11(3): p. 543-557.
80. Peng, Q., et al., Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials, 2013. 34(33): p. 8521-8530.
81. Acharya, S. and S.K. Sahoo, PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Advanced drug delivery reviews, 2011. 63(3): p. 170-183.
82. Kinoshita, R., et al., Improved anticancer effects of albumin-bound paclitaxel nanoparticle via augmentation of EPR effect and albumin-protein interactions using S-nitrosated human serum albumin dimer. Biomaterials, 2017. 140: p. 162-169.
83. Elsadek, B. and F. Kratz, Impact of albumin on drug delivery—New applications on the horizon. Journal of Controlled Release, 2012. 157(1): p. 4-28.
84. Hawkins, M.J., P. Soon-Shiong, and N. Desai, Protein nanoparticles as drug carriers in clinical medicine. Advanced drug delivery reviews, 2008. 60(8): p. 876-885.
85. Sage, H., C. Johnson, and P. Bornstein, Characterization of a novel serum albumin-binding glycoprotein secreted by endothelial cells in culture. Journal of Biological Chemistry, 1984. 259(6): p. 3993-4007.
86. Podhajcer, O.L., et al., The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer and Metastasis Reviews, 2008. 27: p. 523-537.
87. Lin, T., et al., Blood–brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS nano, 2016. 10(11): p. 9999-10012.
88. Hou, W., et al., Biocompatible BSA–MnO 2 nanoparticles for in vivo timely permeability imaging of blood–brain barrier and prediction of hemorrhage transformation in acute ischemic stroke. Nanoscale, 2021. 13(18): p. 8531-8542.
89. Chen, H.-H., et al., pH-Responsive therapeutic solid lipid nanoparticles for reducing p-glycoprotein-mediated drug efflux of multidrug resistant cancer cells. International journal of nanomedicine, 2015: p. 5035-5048.
90. Campos, P.M., F.S.G. Praça, and M.V.L.B. Bentley, Quantification of lipoic acid from skin samples by HPLC using ultraviolet, electrochemical and evaporative light scattering detectors. Journal of Chromatography B, 2016. 1019: p. 66-71.
91. Qi, J., Y. Lu, and W. Wu, Absorption, disposition and pharmacokinetics of solid lipid nanoparticles. Current Drug Metabolism, 2012. 13(4): p. 418-428.
92. Li, F. and H. Zhang, Lysosomal acid lipase in lipid metabolism and beyond. Arteriosclerosis, thrombosis, and vascular biology, 2019. 39(5): p. 850-856.
93. Wang, G.-W., J.B. Klein, and Y.J. Kang, Metallothionein inhibits doxorubicin-induced mitochondrial cytochrome c release and caspase-3 activation in cardiomyocytes. Journal of Pharmacology and Experimental Therapeutics, 2001. 298(2): p. 461-468.
94. Luo, M., et al., Nuclear entry of active caspase-3 is facilitated by its p3-recognition-based specific cleavage activity. Cell research, 2010. 20(2): p. 211-222.
95. Kulikov, R., K.A. Boehme, and C. Blattner, Glycogen synthase kinase 3-dependent phosphorylation of Mdm2 regulates p53 abundance. Molecular and cellular biology, 2005. 25(16): p. 7170-7180.
96. Boehme, K.A., R. Kulikov, and C. Blattner, p53 stabilization in response to DNA damage requires Akt/PKB and DNA-PK. Proceedings of the National Academy of Sciences, 2008. 105(22): p. 7785-7790.
97. Jacobs, K.M., et al., GSK-3β: a bifunctional role in cell death pathways. International journal of cell biology, 2012. 2012.
98. Watcharasit, P., et al., Direct, activating interaction between glycogen synthase kinase-3β and p53 after DNA damage. Proceedings of the National Academy of Sciences, 2002. 99(12): p. 7951-7955.
99. Watcharasit, P., et al., Glycogen synthase kinase-3β (GSK3β) binds to and promotes the actions of p53. Journal of Biological Chemistry, 2003. 278(49): p. 48872-48879.