研究生: |
施予婕 Shih, Yu-Chieh |
---|---|
論文名稱: |
(Ι)混價鈦鎂亞磷酸鹽之合成與光催化水解產氫研究(II)具羧酸基夾層鋅磷酸鹽柱化與奈米形態轉變之研究 (Ι) Synthesis and Visible-Light Photocatalytic Hydrogen Evolution Study on Mixed-Valent Titanium Magnesium Phosphite (II) Reversible Morphology and Structural Transformation Study on Zinc Phosphate |
指導教授: |
王素蘭
Wang, Sue-Lein |
口試委員: |
黃暄益
Huang, Hsuan-Yi 林嘉和 Lin, Chia-Her |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 141 |
中文關鍵詞: | 鈦亞磷酸鹽 、鋅磷酸鹽 、可見光光催化 、產氫 |
外文關鍵詞: | titanium phosphite, zinc phosphate, visible-light photocatalytic, hydrogen evolution |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究論文分為兩個主題,主題一為純無機骨架鈦鎂(亞)磷酸鹽的合成及相關水解產氫應用,主題二為具羧酸基夾層的二維鋅磷酸鹽可逆奈米結構轉變及有機配位基替換之研究。所有化合物皆藉由單晶X-ray繞射儀鑑定結構,並針對每個化合物的特性進行性質量測與開發其應用性。
主題一成果包括一個混價鈦鎂亞磷酸鹽Mg0.5(H2O)3[TiIIITi2IV(HPO3)6]‧x(H2O) (x ≅ 0.4) (M1)以及兩個四價鈦鎂磷酸鹽[Ti3IV"O" 2(H2O)2Mg2(H2O)8(PO4)4]‧4H2O (M2)、Ti1.5IV(HPO4)(PO4)2Mg(H2O)4 (M3)。M1是前所未有的混價鈦鎂亞磷酸鹽,其結構由TiO6八面體與HPO3四面體共角形成十二員環,十二員環之間以亞磷酸共角方式連接形成三維結構,而M2和M3是四價鈦鎂磷酸鹽首例,M2結構由TiO6八面體與PO4四面體以氧原子共角方式組成四員環鏈,四員環鏈之間藉由TiO6八面體共角方式連接形成三維結構,結構中有著端點為配位水的Ti3O14(H2O)2三聚體存在,而M3結構由TiO6八面體與PO4四面體形成的四員環以氧原子共角及共邊方式無限延伸形成四員環鏈,再和HPO4四面體、MgO2(H2O)4八面體以氧原子共角連接形成三維結構,其鈦亞磷酸鹽骨架是由α-TiP和γ-TiP混合延伸形成的結構。文獻上鈦磷酸/亞磷酸鹽結構非常罕見,目前只有五個混價鈦磷酸鹽的例子,而混價鈦亞磷酸鹽未曾被發表,因此M1在鈦亞磷酸鹽系統中是很大的突破,本論文針對M1進行可見光光催化水解產氫應用,並利用光電流實驗證實其具有光催化活性,透過調整反應條件及負載鉑金屬奈米粒子以提升光催化效率。
主題二之成果,為對一個具高熱穩定性以及具有羧酸基夾層之鋅磷酸鹽Zn2(PO4)(NH2HBDC),達到純相合成條件、表面改質、可逆奈米結構生成及結構維度轉變皆有嶄新的結果及更深入的探討。首先,實驗合成條件得到了純相,並能夠在反應物與產物間建立少見的平衡計量化學方程式stoichiometric reaction。此化合物是二維層狀結構,表面具有裸露的羧酸基,本論文成功利用此結構特色藉由機械化學反應將其表面改質為疏水材料,呈現出可逆的潤濕性,在酸性溶液中藉由超音波震盪,也發現化合物有可逆的奈米柱與微米層狀轉換過程,另外在水溶液中利用有機配位基置換可得到具有新穎三維結構的鋅磷酸鹽。
This thesis presents two unique themes of research: one is synthesis and visible-light photocatalytic hydrogen evolution study on mixed-valent titanium magnesium phosphite; the other is reversible morphology and structural transformation study on zinc phosphate. All compounds were structurally characterized by single crystal X-ray diffraction and varied methods were used for characterization of properties to explore their applications.
Three titanium magnesium phosphorus oxides (TiMgPOs) are introduced in the first theme: Mg0.5(H2O)3[TiIIITi2IV(HPO3)6]‧x(H2O) (x ≅ 0.4) (M1), [Ti3IV"O" 2(H2O)2Mg2(H2O)8(PO4)4]‧4H2O (M2), and Ti1.5IV(HPO4)(PO4)2Mg(H2O)4 (M3). M1 is the first mixed-valent titanium(III)/titanium(IV) phosphite, which structure contains TiO6 octahedra and HPO3 tetrahedra interlinked via corner sharing to form 12-membered-ring channels. Such channels are further interconnected by HPO3 groups via corner sharing to form a 3D structure. The structure of M2 comprises 4MR chains formed of TiO6 octahedra and PO4 tetrahedra, which are interconnected via TiO6 and MgO2(H2O)4 through oxygen atoms to form a 3D structure. An unprecedented Ti3O14(H2O)2 trimer was found in the structure of M2. The structure of M3 comprises a titanium phosphate layer formed of mixed α-TiP and γ-TiP type of chains. Such layers are interconnected via MgO2(H2O)4 octahedra into a 3D structure. Based on a literature survey, mixed-valent titanium phosphorus oxides are quite rare since there are only five examples. To exploit the application of mixed valent TiMgPOs, we anticipated the photocatalytic activity of M1 to produce hydrogen from water and have confirmed the photocurrent response of M1 by a three-electrode system under simulated sunlight irradiation. In addition, the photocatalytic activity could be improved by loading platinum nanoparticles as co-catalyst, which were deposited by the photo-deposition method.
A layered zincophosphate, Zn2(PO4)(NH2HBDC), with a high thermal stability and 2D arrays of carboxylic acid group exteriorly distributed on the structural surface is introduced in the second theme. The experimental condition, surface modification, reversible morphology and structural dimensionality shifting are discussed thoroughly. First of all, a stoichiometric reaction condition was determined to produce a high yield of the zincophosphate. Secondly, with the exposed carboxylic acid groups on the layer surface, the wettability could be manipulated from hydrophilic to hydrophobic reversibly by mechano-chemical reactions and acid treatment. In the process of acid treatment, nanorods were formed during sonication and reassembled back to laminar in acetone. Finally, a novel 3D pillared zincophosphate was obtained by immersing Zn2(PO4)(NH2HBDC) in a bipyridyl solution to exchange the organic ligands, presenting an unique structural dimensionality shifting.
1.Ekambaram, S.; Sevov, S. C., Angew Chem Int Ed 1999, 38, 372-375.
2.Ekambaram, S.; Serre, C.; Férey, G.; Sevov, S. C., Chem. Mater. 2000, 12, 444-449.
3.Serre, C.; Haouas, M.; Taulelle, F.; Van Beek, W.; Férey, G., C. R. Chimie 2010, 13, 336-342.
4.Serre, C.; Guillou, N.; Ferey, G., J. Mater. Chem. 1999, 9, 1185-1189.
5.Yongnan, Z.; Yang, Y.; Xiaoqin, Y.; Wenjun, G., Chem Lett 2007, 36, 456-457.
6.Lallaoui, A.; Edfouf, Z.; Benabdallah, O.; Idrissi, S.; Abd-Lefdil, M.; Cherkaoui El Moursli, F., Int. J. Hydrogen Energy 2018.
7.Fujishima, A.; Honda, K., Nature 1972, 238, 37.
8.Gomes Silva, C.; Juárez, R.; Marino, T.; Molinari, R.; García, H., J. Am. Chem. Soc. 2011, 133, 595-602.
9.(a) Ihara, T.; Miyoshi, M.; Iriyama, Y.; Matsumoto, O.; Sugihara, S., Applied Catalysis B: Environmental 2003, 42, 403-409; (b) Gomathi Devi, L.; Kavitha, R., RSC Adv. 2014, 4, 28265-28299.
10.Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S., Science 2011, 331, 746-750.
11.(a) Fan, Z.; Krassimir, B.; J., D. R.; Le, W.; Phillip, S.; Xiang, Z.; Christopher, B.; Pingyun, F., Angew. Chem. 2012, 124, 6327-6330; (b) Zuo, F.; Wang, L.; Wu, T.; Zhang, Z.; Borchardt, D.; Feng, P., J. Am. Chem. Soc. 2010, 132, 11856-11857; (c) Grabstanowicz, L. R.; Gao, S.; Li, T.; Rickard, R. M.; Rajh, T.; Liu, D.-J.; Xu, T., Inorg. Chem. 2013, 52, 3884-3890; (d) Lian, Z.; Wang, W.; Li, G.; Tian, F.; Schanze, K. S.; Li, H., ACS Appl. Mater. Interfaces 2017, 9, 16959-16966.
12.(a) Guo, S.-y.; Han, S., J. Power Sources 2014, 267, 9-13; (b) Guo, S.-y.; Han, S.; Chi, B.; Pu, J.; Li, J., Int. J. Hydrogen Energy 2014, 39, 2446-2453.
13.Serra, M.; Baldovi, H. G.; Albarracin, F.; Garcia, H., Applied Catalysis B: Environmental 2016, 183, 159-167.
14.Poojary, D. M.; Bortun, A. I.; Bortun, L. N.; Clearfield, A., J. Solid State Chem. 1997, 132, 213-223.
15.Salvado, M. A.; Pertierra, P.; Garcia-Granda, S.; Garcia, J. R.; Rodriguez, J.; Fernandez-Diaz, M. T., Acta Crystallogr. Sect. B 1996, 52, 896-898.
16.Mafra, L.; Almeida Paz, F. A.; Rocha, J.; Espina, A.; Khainakov, S. A.; García, J. R.; Fernandez, C., Chem. Mater. 2005, 17, 6287-6294.
17.Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C., Appl. Surf. Sci. 2011, 257, 2717-2730.
18.Horiuchi, Y.; Toyao, T.; Saito, M.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Anpo, M.; Matsuoka, M., J. Phys. Chem. C 2012, 116, 20848-20853.
19.M., A. M.; E., B. C., J. Am. Ceram. Soc. 1991, 74, 2299-2300.
20.Kudo, A.; Miseki, Y., Chem. Soc. Rev. 2009, 38, 253-278.
21.Wang, F.; Wong, R. J.; Ho, J. H.; Jiang, Y.; Amal, R., ACS Appl. Mater. Interfaces 2017, 9, 30575-30582.
22.Lin, W.-C.; Yang, W.-D.; Huang, I. L.; Wu, T.-S.; Chung, Z.-J., Energy & Fuels 2009, 23, 2192-2196.
23.Hideki, K.; Yasuyoshi, S.; Akihide, I.; Akihiko, K., Bull Chem Soc Jpn 2007, 80, 2457-2464.
24.Wenderich, K.; Mul, G., Chem. Rev. 2016, 116, 14587-14619.
25.Jiang, Z.; Zhang, Z.; Shangguan, W.; Isaacs, M. A.; Durndell, L. J.; Parlett, C. M. A.; Lee, A. F., Catal. Sci. Technol. 2016, 6, 81-88.
26.Evgenidou, E.; Fytianos, K.; Poulios, I., J. Photochem. Photobiol. Chem. 2005, 175, 29-38.
27.(a) Iguchi, S.; Teramura, K.; Hosokawa, S.; Tanaka, T., Phys. Chem. Chem. Phys. 2015, 17, 17995-18003; (b) Huang, L.; Li, R.; Chong, R.; Liu, G.; Han, J.; Li, C., Catal. Sci. Technol. 2014, 4, 2913-2918.