簡易檢索 / 詳目顯示

研究生: 陳端哲
Chen, Tuan-Che
論文名稱: Energy Efficiency in IEEE 802.16eWireless MANs and MultihopWireless Networks
IEEE 802.16e與多重節點無線網路之省電機制
指導教授: 陳志成
Chen, Jyh-Cheng
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 84
中文關鍵詞: 省電節能網路編碼無線網路802.16
外文關鍵詞: energy saving, network coding, wireless network, 802.16
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • How to save energy is critical in wireless networks. Most of mobile devices are batteryoperated with energy constraints. Therefore, energy-efficienct protocols are required to extend battery lifetime.
    In this thesis, we first present Maximum Unavailability Interval (MUI), to improve the energy efficiency for the Power Saving Class (PSC) of Type II in IEEE 802.16e. By applying the Chinese Remainder Theorem, the proposed MUI is guaranteed to find the maximum Unavailability Interval, during which the transceiver can be powered down. We also propose new mathematical techniques to reduce the computational complexity when solving the Chinese Remainder Theorem problem. Because the computational complexity is reduced significantly, the proposed MUI can be practically implemented in real systems. The proposed MUI is fully compatible with the 802.16e standard. It provides a systematic way to determine the start frame number, one of the important parameters defined in the standard. In addition to analyzing the computational complexity, simulations and experiments are conducted to evaluate the performance of the proposed algorithms.
    To conserve energy in IEEE 802.16e, MUI is guaranteed to find the maximum unavailability interval. Thus, energy consumption can be reduced significantly. In this thesis, we
    further extendMUI for unicast traffic which includes Type I and Type II PSCs. The proposed eMUI still can achieve maximum unavailability interval. The simulation results show that the proposed eMUI reduces energy consumption and average packet response time.
    In IEEE 802.16j, relays are added into IEEE 802.16 systems. A relay network can be considered as one type of multihop wireless networks. Also, network coding is a promising way to improve network performance. In this thesis, we further consider practical use of network coding and propose an energy-efficient routing algorithm for multihop wireless networks by exploiting coding opportunities. In the presence of energy constraints, the proposed coding-aware algorithm aims to maximize the total amount of data routed successfully over the network. We derive the competitive ratio to compare the proposed on-line algorithm with the optimal off-line algorithm which knows the information of future flow arrivals. The
    competitive ratio shows that the proposed algorithm can achieve the performance which is bound to a factor of the best case. From a practical perspective, the proposed algorithm is also evaluated and compared with other algorithms by extensive simulations. Results show that the proposed algorithm can increase the amount of data routed successfully and reduce the energy consumption.


    無線網路中,受到電池電力的限制,行動裝置如何有效地節能是
    一大議題。
    本論文首先針對IEEE 802.16e,提出了一套省電演算法,稱為
    Maximum Unavailability Interval(MUI)。MUI 利用中國餘式定理
    (Chinese Remainder Theorem),在給定的各個Type II Class 下,只需動態調整一參數,便能有效保證行動裝置獲得最大的睡眠時間,可大幅減少通訊中所產生的電力消耗。此外,本論文亦提出另一套演算法來降低MUI 的計算複雜度,此演算法並完全相容於802.16e 的標準。透過電腦模擬的結果,驗證了各項創新演算法。此研究最大之特點,在於巧妙地應用「中國餘式定理」,只要調整start frame
    number,由數學理論保證MUI 可獲得「最大」的睡眠時間。
    本論文更提出一同時考慮Type I Class 的省電機制,稱為eMUI,
    eMUI 依舊能保證獲得「最大」的睡眠時間,透過模擬,結果顯示eMUI可以減少電能消耗和封包回應的平均時間。
    IEEE 802.16j 標準中,中繼站(Relay)的概念被提出,中繼站
    網路可被視為多節點網路的一種。此外,利用網路編碼(Network
    Coding)已被證明可以改善網路效能,本論文的第二部分利用網路編
    碼提出了一套節能的路徑演算法於多節點網路中,此演算法透尋找編
    碼的機會,找出最佳節能的路徑。在給定的電力限制下,此演算法能
    使成功被傳送的資料達到最多。本論文並推導出此演算法和最佳化演
    算法所能傳的資料比例(competitive ratio),證明此演算法與最佳化演算法的效能差距小於某個值。利用模擬分析,此演算法與其他既有的方法比較,結果顯示此演算法能增加整體資料的傳輸量並減低電能的消耗。

    Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Energy Saving in IEEE 802.16e Wireless MANs . . . . . . . . . . . . . . . 2 1.2. Energy-Efficient Routing with Coding Opportunities . . . . . . . . . . . . 4 1.3. Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2. Maximizing Unavailability Interval for Energy Saving in IEEE 802.16eWireless MANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2. Proposed Maximum Unavailability Interval (MUI) . . . . . . . . . . . . . 13 2.2.1. Chinese Remainder Theorem . . . . . . . . . . . . . . . . . . . . . 15 2.2.2. MUI using Chinese Remainder Algorithm . . . . . . . . . . . . . . 17 2.3. Reducing Computational Complexity by Intelligent Table Consulting (ITC) 20 2.3.1. Table Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.2. Table Consulting . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.3. Table-based Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.4. Intelligent Table Consulting (ITC) . . . . . . . . . . . . . . . . . . 28 2.4. Analysis of Computational Complexity . . . . . . . . . . . . . . . . . . . 32 2.4.1. Chinese Remainder Algorithm . . . . . . . . . . . . . . . . . . . . 32 2.4.2. Table-based Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4.3. ITC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4.4. Brute Force Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 33 2.5. Proposed eMUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.6. Performance Evaluation and Numerical Results . . . . . . . . . . . . . . . 36 2.6.1. Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.6.2. Performance of ITC . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.6.3. Computational Complexity . . . . . . . . . . . . . . . . . . . . . . 42 2.6.4. eMUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.7. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 46 3. Energy-Efficient Routing with CodingOpportunities forMultihopWireless Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2. Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2.1. System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2.2. Proposed ECO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2.3. Bound of Optimal Competitive Ratio . . . . . . . . . . . . . . . . 62 3.2.4. Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3. Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.1. Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . 68 3.3.2. Comparison of ECO and iECO . . . . . . . . . . . . . . . . . . . . 71 3.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

    [1] IEEE Std 802.16-2004, “Part 16: air interface for fixed broadband wireless access systems,”
    Oct. 2004.
    [2] IEEE Std 802.16e-2005, “Part 16: air interface for fixed and mobile broadband wireless
    access systems – amendment 2: physical and medium access control layers for
    combined fixed and mobile operation in licensed bands,” Feb. 2006.
    [3] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft, “XORs in the air:
    practical wireless network coding,” in Proc. of ACM SIGCOMM, (Pisa, Italy), pp. 243–
    254, Sept. 2006.
    [4] S. Sengupta, S. Rayanchu, and S. Banerjee, “An analysis of wireless network coding
    for unicast sessions: the case for coding-aware routing,” in Proc. of IEEE INFOCOM,
    (Anchorage, AL, USA), pp. 1028–1036, May 2007.
    [5] S. Plotkin, “Competitive routing of virtual circuits in ATM networks,” IEEE J. Select.
    Areas Commun., vol. 13, pp. 1128–1136, Aug. 1995.
    [6] C. E. Jones, K. M. Sivalingam, P. Agrawal, and J.-C. Chen, “A survey of energy
    efficient network protocols for wireless networks,” ACM Wireless Networks, vol. 7,
    pp. 343–358, Aug. 2001.
    [7] J.-C. Chen, K. M. Sivalingam, P. Agrawal, and S. Kishore, “A comparison of MAC
    protocols for wireless local networks based on battery power consumption,” in Proc. of IEEE INFOCOM, (San Francisco, CA), pp. 150–157, Apr. 1998.
    [8] H. Woesner, J.-P. Ebert, M. Schlager, and A. Wolisz, “Power-saving mechanisms in
    emerging standards for wireless LANs: the MAC level perspective,” IEEE Personal
    Comm., vol. 5, pp. 40–48, June 1998.
    [9] J.-C. Chen, K. M. Sivalingam, and P. Agrawal, “Performance comparison of battery
    power consumption in wireless multiple access protocols,” ACM Wireless Networks,
    vol. 5, pp. 445–460, Dec. 1999.
    [10] D. Qiao, S. Choi, A. Soomro, and K. G. Shin, “Energy-efficient PCF operation of IEEE
    802.11a wireless LAN,” in Proc. of IEEE INFOCOM, (New York, NY), pp. 580–589,
    June 2002.
    [11] G. Anastasi, M. Conti, E. Gregori, and A. Passarella, “A performance study of powersaving
    polices for Wi-Fi hotspots,” Computer Networks, vol. 45, pp. 295–318, June
    2004.
    [12] F. Zhang, T. D. Todd, D. Zhao, and V. Kezys, “Power saving access points for IEEE
    802.11 wireless network infrastructure,” vol. 5, pp. 144–156, Feb. 2006.
    [13] J.-C. Chen and K.-W. Cheng, “EDCA/CA: enhancement of IEEE 802.11e EDCA by
    contention adaption for energy efficiency,” IEEE Trans. Wireless Commun. Accepted
    and to appear.
    [14] S.-R. Yang and Y.-B. Lin, “Modeling UMTS discontinuous reception mechanism,”
    IEEE Trans. Wireless Commun., vol. 4, pp. 312–319, Jan. 2005.
    [15] J.-H. Yeh, J.-C. Chen, and C.-C. Lee, “Comparative analysis of energy saving techniques
    in 3GPP and 3GPP2 systems,” IEEE Trans. Veh. Technol. Accepted and to
    appear.
    [16] J.-B. Seo, S.-Q. Lee, N.-H. Park, H.-W. Lee, and C.-H. Cho, “Performance analysis
    of sleep mode operation in IEEE 802.16e,” in Proc. of IEEE Vehicular Technology
    Conference, (Los Angeles, CA), pp. 1169–1173, Sept. 2004.
    [17] Y. Xiao, “Energy saving mechanism in the IEEE 802.16e wireless MAN,” IEEE Commun.
    Lett., vol. 9, pp. 595–597, July 2005.
    [18] Y. Zhang and M. Fujise, “Energy management in the IEEE 802.16eMAC,” IEEE Commun.
    Lett., vol. 10, pp. 311–313, Apr. 2006.
    [19] K. Han and S. Choi, “Performance analysis of sleep mode operation in IEEE 802.16e
    mobile broadband wireless access systems,” in Proc. of IEEE Vehicular Technology
    Conference, (Melbourne, Australia), pp. 1141–1145, May 2006.
    [20] J. Shi, G. Fang, Y. Sun, J. Zhou, Z. Li, and E. Dutkiewicz, “Improving mobile station
    energy efficiency in IEEE 802.16e WMAN by burst scheduling,” in Proc. of IEEE
    GLOBECOM, (San Francisco, CA), Nov. 2006.
    [21] J. Jang, K. Han, and S. Choi, “Adaptive power saving strategies for IEEE 802.16e
    mobile broadband wireless access,” in Proc. of Asia-Pacific Conference on Communications
    (APCC), (Busan, Korea), Aug. 2006.
    [22] L. Kong and D. H. Tsang, “Performance study of power saving classes of Type I and
    II in IEEE 802.16e,” in Proc. IEEE Conference on Local Computer Networks (LCN),
    (Tampa, FL), pp. 20–27, Nov. 2006.
    [23] T.-C. Chen, Y.-Y. Chen, and J.-C. Chen, “An efficient energy saving mechanism for
    IEEE 802.16e wirelessMANs,” IEEE Trans.Wireless Commun., vol. 7, pp. 3708–3712,
    Oct. 2008.
    [24] C. Ding, D. Pei, and A. Salomaa, Chinese Remainder Theorem - Applications in Computing,
    Coding, Cryptography. World Scientific, 1996.
    [25] I. Niven, H. S. Zuckerman, and H. L. Montgomery, The Theory of Numbers. Wiley,
    1991.
    [26] K. H. Rosen, Discrete Mathematics and Its Applications. McGraw-Hill, 2003.
    [27] J.-H. Chang and L. Tassiulas, “Energy conserving routing in wireless ad-hoc networks,”
    in Proc. of IEEE INFOCOM, (Tel Aviv, Israel), pp. 22–31, Mar. 2000.
    [28] K. Kar, M. Kodialam, T. Lakshman, and L. Tassiulas, “Routing for network capacity
    maximization in energy-constrained ad-hoc networks,” in Proc. of IEEE INFOCOM,
    (San Franciso, CA, USA), pp. 673–681, Mar. 2003.
    [29] Q. Li, J. Aslam, and D. Rus, “Online power-aware routing in wireless ad-hoc networks,”
    in Proc. of ACM/IEEE International Conference on Mobile Computing and
    Networking (MobiCom), (Rome, Italy), pp. 108–121, July 2001.
    [30] S. Kwon and N. B. Shroff, “Unified energy-efficient routing for multi-hop wireless
    networks,” in Proc. of IEEE INFOCOM, (Phoenix, AZ, USA), pp. 430–438,Mar. 2008.
    [31] L. Lin, N. B. Shroff, and R. Srikant, “Asymptotically optimal power-aware routing for
    multihop wireless networks with renewable energy sources,” in Proc. of IEEE INFOCOM,
    (Miami, FL, USA), pp. 1262–1272, Mar. 2005.
    [32] T. Melodia, D. Pompili, and I. F. Akyildiz, “Optimal local topology knowledge for
    energy efficient geographical routing in sensor networks,” in Proc. of IEEE INFOCOM,
    (Hong Kong), pp. 1705–1716, Mar. 2004.
    [33] V. Rodoplu and T. H. Meng, “Minimum energy mobile wireless networks,” IEEE J.
    Select. Areas Commun., vol. 17, pp. 1333–1344, Aug. 1999.
    [34] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information flow,” IEEE
    Trans. Inform. Theory, vol. 46, pp. 1204–1216, July 2000.
    [35] R. Koetter and M. Medard, “An algebraic approach to network coding,” IEEE/ACM
    Trans. Networking, vol. 11, pp. 782–795, Oct. 2003.
    [36] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE Trans. Inform.
    Theory, vol. 49, pp. 371–381, Feb. 2003.
    [37] D. S. Lun, N. Ratnakar, R. Koetter, M. Medard, E. Ahmed, and H. Lee, “Achieving
    minimum-cost multicast: a decentralized approach based on network coding,” in Proc.
    of IEEE INFOCOM, (Miami, FL, USA), pp. 1607–1617, Mar. 2005.
    [38] Z. Li and B. Li, “Network coding: the case of multiple unicast sessions,” in Proc. of
    Allerton Conference, (Urbana, IL, USA), Sept. 2004.
    [39] B. Ni, N. Santhapuri, Z. Zhong, and S. Nelakuditi, “Routing with opportunistically
    coded exchanges in wireless mesh networks,” in 2nd IEEE Workshop on Wireless Mesh
    Networks, (Reston, VA, USA), pp. 157–159, Sept. 2006.
    [40] Y. Wu, S. M. Das, and R. Chandra, “Routing with a markovian metric to promote local
    mixing,” in Proc. of IEEE INFOCOM, (Anchorage, AL, USA), pp. 2381–2385, May
    2007.
    [41] P. Chaporkar and A. Proutiere, “Adaptive network coding and scheduling for maximizing
    throughput in wireless networks,” in Proc. of ACM/IEEE International Conference
    on Mobile Computing and Networking (MobiCom), (Montreal, QC, Canada), pp. 135–
    146, Sept. 2007.
    [42] G. L. Nemhauser and L. A. Wolsey, Integer and combinatorial optimization. John
    Wiley & Sons, 1988.
    [43] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms,
    second edition. McGraw-Hill, 2003.
    [44] B. N. Karp, “Geographic routing for wireless networks,” Ph.D. thesis, Havard University,
    2000.
    [45] M. V. Pedersen, F. H. Fitzek, and T. Larsen, “Implementation and performance evaluation
    of network coding for cooperative mobile devices,” in Proc. of IEEE International
    Conference on Communications (ICC), (Beijing, China), pp. 91–96, May 2008.
    [46] M. Stemm and R. H. Katz, “Measuring and reducing energy consumption of network
    interfaces in hand-held devices,” IEICE Transactions on Communications, vol. 80,
    pp. 1125–1131, Aug. 1997.
    [47] C. Fragouli, J.Widmer, and J.-Y. L. Boudec, “A network coding approach to energy efficient
    broadcasting: from theory to practice,” in Proc. of IEEE INFOCOM, (Barcelona,
    Spain), pp. 1–11, Apr. 2006.
    [48] A. K. Haddad and R. Riedi, “Bounds on the benefit of network coding: throughput
    and energy saving in wireless networks,” in Proc. of IEEE INFOCOM, (Phoenix, AZ,
    USA), pp. 376–384, Mar. 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE