簡易檢索 / 詳目顯示

研究生: 陳長福
Chang-Fu Chen
論文名稱: 以分子動力學模擬研究熱壓式奈米壓印系統的加工行為
Molecular Dynamics Simulation of Thermoplastic Nanoimprint Lithography Process
指導教授: 張榮語
Rong-Yeu Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 80
中文關鍵詞: 分子動力學模擬奈米壓印玻璃轉化溫度應力分布圖案複製程度
外文關鍵詞: Molecular dynamics simulation, Nanoimprint, Glass transsition temperature, Tg, Stress contour
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用分子動力學模擬極性線性高分子在熱壓式奈米壓印下的加工行為。首先以分子動力學模擬高分子薄膜在真空表面以及金屬表面的玻璃轉化溫度以決定加工基本條件。在模擬奈米壓印的加工系統;研究可大致分為三部分:
    (一)玻璃轉化溫度:藉由MSD的差異,來分析高分子薄膜不同區域的玻璃轉化溫度。
    (二)恆溫壓印系統:在固定溫度下,比較不同溫度的壓印、保壓以及離模過程中模具受力情形以及高分子的成形程度、密度分布、應力分布等性質。
    (三)熱壓式壓印系統:最後討論熱壓式奈米壓印製程情形,在壓印以及離模過程中的成形情形,模擬結果顯示出,此一加工流程所得到的圖案複製化程度優於恆溫壓印流程。 最後依照模擬所得的應力分布,重新設計模具形狀,模擬結果可以得到更低的應力分布,在圖案複製化的程度也有改善。


    摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 XI 符號說明 XII 第一章 緒論 1 1.1 前言 1 1.2 研究目的與動機 7 1.3 奈米壓印技術引論 8 1.4 分子動力學模擬簡介 11 第二章 文獻回顧 12 2.1 奈米壓印文獻回顧 12 2.2 分子動力學模擬文獻回顧 18 第三章 研究方法 22 3.1 分子動力學基本理論 22 3.1.1運動方程式的數值方法 23 3.1.2周期性邊界 25 3.2 分子勢能場 25 3.2.1 分子內作用力 27 3.2.2 分子間作用力 27 3.3 系綜 29 3.4 程式加速方法 30 3.4.1 截斷半徑法 30 3.4.2 Verlet鄰近列表法(Neighbor list) 31 3.5 統計性質 31 3.5.1溫度(Temperature) 31 3.5.2應力張量(Stress Tensor) 31 3.5.4方均根距離(MSD) 32 3.5.5分子排向性(Orientation) 32 3.5.6 迴旋半徑(Radius of Gyration)以及末端末端距離(End to End Distance) 32 第四章 模擬系統 34 4.1 分子勢能參數 34 4.2 系統架構 36 4.2.1 塊材系統(Bulk system) 36 4.2.2 薄膜系統(Film system) 36 4.2.3 壓印系統(Nanoimprinting Process) 38 第五章 結果與討論 40 5.1塊材系統(Bulk system) 40 5.2薄膜系統(Film system) 40 5.3壓印系統(Nanoimprinting Process) 44 5.3.1 恆溫壓印過程 44 5.3.2 熱壓式奈米壓印製程 59 第六章 結論與未來展望 67 參考文獻 74

    [1] R.P Feynman,” Lectures on Physics”, Vol 1, pp. 3-6. (1963)
    [2] G Binnig, H Rohrer, US Patent 4,343,993,
    [3] G Binnig, H Rohrer, C Gerber, E Weibel ,” Tunneling through a controllable vacuum gap”, Applied Physics Letters, 40 ,(1982)
    [4] D. M. Eigler and E. K. Schweizer,” Positioning single atoms with a scanning tunneling microscope” , Nature , Vol. 344, pp. 524-526,(1990)
    [5] Sumio Iijima, Nature,” Helical microtubules of graphitic carbon” ,1991,Vol. 354, pp. 56-58.
    [6] 台灣工業技術研究院,http://www.itri.org.tw/chi/rnd/focused_rnd/nanotechnology/
    [7] W. Barthlott, C. Neinhuis ,” Purity of the sacred lotus, or escape from contamination in biological surfaces “ , Planta ,Vol. 202,pp. 1-8 (1997)
    [8] AK Geim, SV Dubonos, IV Grigorieva, KS Novoselov,” Microfabricated adhesive mimicking gecko foot-hair” , Nature Materials Vol. 2, pp. 461-463, (2003)
    [9] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom,” Imprint of sub-25 nm vias and trenches in polymers” , Appl. Phys. Lett., Vol.67, pp. 3114-3116, (1995)
    [10] Introduction to Nanoimprint(Lithography) Technolog,東華大學材料科學與工程學系,魏茂國博士
    [11] Stephen Y. Chou, Peter R. Krauss and Preston J. Wenstrom, “Imprint Lithography with 25-Nanometer Resolution “ ,SCIENCE, Vol. 272, pp. 85-87, (1996)
    [12] Michael D Austin, Wei Zhang, Haixiong Ge, DWasserman,S A Lyon and Stephen Y Chou, “6 nm half-pitch lines and 0.04 μm2 static random access memory patterns by nanoimprint lithography “ ,Nanotechnology ,Vol. 16, pp. 1058-1061, (2005)
    [13] L.J. Heyderman , H. Schift , C. David, J. Gobrecht, T. Schweizer,” Flow behaviour of thin polymer films used for hot embossing lithography” , Microelectronic Engineering, Vol. 54, pp. 229-245, (2000)
    [14] Christel Martin, Laurence Ressier, Jean Pierre Peyrade, “Study ofPMMA recoveries on micrometric patterns replicated by nano-imprint lithography “ ,Physica E Vol.17,pp. 523-525 (2003)
    [15] Mingtao Li, Lei Chen, and Stephen Y. Chou ,” Direct three-dimensional patterning using nanoimprint lithography “, Appl. Phys. Lett,Vol. 78, No.21,pp. 3322-3324, (2001)
    [16] Michael D. Austina and Stephen Y. Chou,” Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography”, Appl. Phys. Lett, Vol. 81, No. 23, (2002)
    [17] Peter R. Krauss and Stephen Y. Chou ,” Nano-compact disks with 400 Gbit/in2 storage density fabricated using nanoimprint lithography and read with proximal probe” , Appl. Phys. Lett. Vol. 71, No. 21, (1997)
    [18] Mingtao Li, Jian Wang, Lei Zhuang, and Stephen Y. Chou, Appl. Phys. Lett.,” Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography”, Vol. 76, No. 6, (2000)
    [19] Zhaoning Yu, Paru Deshpande, Wei Wu, Jian Wang, and Stephen Y. Chou,” Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography”, Appl. Phys. Lett., Vol. 77, No. 7, (2000)
    [20] Quang-Cherng HSU, Chen-Da WU and Te-Hua FANG,” Deformation Mechanism and Punch Taper Effects on Nanoimprint Process by Molecular Dynamics”, Jpn. J. Appl. Phys., Vol. 43, No. 11A, (2004)
    [21] Quang-Cherng HSU, Chen-Da WU and Te-Hua FANG,” Studies on nanoimprint process parameters of copper by molecular dynamics analysis”, Computational Materials Science, Vol. 34, pp.314–322, (2005)
    [22] Te-Hua Fang , Cheng-Da Wu , Win-Jin Chang,” ” Molecular dynamics analysis of nanoimprinted Cu–Ni alloys”, Applied Surface Science, Vol. 253, pp. 6963-6968, (2007)
    [23] Kazuhiro Tada, Masaaki Yasuda, Yoshihisa Kimoto, Hiroaki Kawata and Yoshihiko Hirai , Micro- and Nano- Engineering,(2006)
    [24] 張榮語、林俊儀,”以分子動力學模擬奈米壓印的加工行為”, 國立清華大學化學工程學系94年碩士論文
    [25] Ming-Chieh Cheng,, Cheng-Kuo Sung, W.H. Wang,” The effects of thin-film thickness on the formaton of metallic patterns by direct nanoimprint”, Journal of Materials Processing Technology, Vol.191,pp. 326-330, (2007)
    [26] Alder, B. J.; T. E. Wainwright.,”Phase Transition for A Hard Sphere System”,J. Chem. Phys. Vol. 27,No. 2, (1957)
    [27] A. Rahman,”Correlations in the Motion of Atoms in Liquids Argon”, Phys. Rev. 136, A405 (1964)
    [28] Stillinger, F.H., and A. Rahman, “Molecular Dynamic Study of Liquid Water”,J. Chem. Phys., Vol. 60,( 1974)
    [29] McCammon, J; JB Gelin, M Karplus ,” Dynamics of folded proteins”, Nature 267: 585-590, (1977).
    [30] Chunxia Chen and Janna K. Maranas,” Local Dynamics of Syndiotactic Poly (methyl methacrylate) Using Molecular Dynamics Simulation”, Macromolecules, Vol. 39, No. 26,pp. 9630-9640, (2006)
    [31] A. Soldera, N. Metatla,” Glass transition phenomena observed in stereoregular PMMAs using molecular modeling”, Composites: Part A, Vol. 36,pp. 521-530, (2005)
    [32] B. Prathab, V. Subramanian, T.M. Aminabhavi,” Molecular dynamics simulations to investigate polymer–polymer and polymer–metal oxide interactions”, Polymer 48 (2007) 409-416
    [33] Chunxia Chen and Janna K. Maranas,” A comparison of united atom, explicit atom, and coarse-grained simulation models for poly(ethylene oxide)”, J. Chem. Phys ,124,( 2006)
    [34] H Morita, K Tanaka, T Kajiyama, T Nishi, M Doi “Study of the glass transition temperature of polymer surface by coarse-grained molecular dynamics”, Macromolecules, 39, 6233-6237 ,(2006)
    [35] Scott J. Weiner, Peter A. Kollman, David A. Case,U. Chandra Singh, Caterina Ghio,” A new force field for molecular mechanical simulation of nucleic acids and proteins”, J. Am. Chem. SOC,.Vol. 106, pp. 765-784,(1984)
    [36] W. L. Jorgensen and J. Tirado-Rives,” The OPLS Potential Functions for Proteins. Energy Minimizations for Crystals of Cyclic Peptides and Crambin ”, J. Am. Chem. Soc., Vol. 110, pp.1657-1666, (1988)
    [37] W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives.,” Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids”, J. Am. Chem. Soc., Vol. 118, pp.11225-11236., (1996)
    [38] S. Lifson, A. Warshel,” Consistent Force Field for Calculations of Conformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n-Alkane Molecules”, J. Chem. Phys. Vol. 49 (1968)
    [39] H. Sun, J. Comput. Chem.,Vol. 15 ,(1994)
    [40] H. Sun, ,” Ab initio characterizations of molecular structures, conformation energies, and hydrogen-bonding”, Macromolecules, Vol. 26 ,(1994)
    [41] H. Sun, S.J. Mumby, J.R. Maple, A.T. Hagler,” An ab Initio CFF93 All-Atom Force Field for Polycarbonates”, J. Am. Chem. Soc. Vol. 116, (1994)
    [42] H. Sun,” ” Ab initio calculations and force field development for computer simulation of polysilanes””, Macromolecules, Vol. 28, (1995)
    [43] Ewald P. (1921) "Die Berechnung optischer und elektrostatischer Gitterpotentiale", Ann. Phys. 369, 253-287.
    [44] “Plain Ewald and PME”, Thierry Matthey , June 24, 2005
    [45] W.G. Hoover,” Canonical dynamics: Equilibrium phase-space distributions”, Physical Review A, vol. 31,1695-1697,(1985)
    [46] S. Nose,” A unified formulation of the constant temperature molecular dynamics methods”, Journal of Chemical Physics , Vol. 81 , 511-519,(1984)
    [47] A. Einstein, “Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden ”,Ann. Phys. Vol 17 , 549 (1905)
    [48] Grant D. Smith ,” A Force Field for Simulations of 1,2-Dimethoxyethane and Poly(oxyethy1ene) Based upon ab Initio Electronic Structure Calculations on Model Molecules”,J. Phys. Chem.,Vol 97, 12752-12759(1993)
    [49] A. Goddard III ,” DREIDING: a generic force field for molecular simulations”,The Journal of physical Chemistry , Vol 94 , 8897-8909,(1990)
    [50] Seung Soon Jang ,” Structures and Properties of Self-Assembled Monolayers of Bistable [2]Rotaxanes on Au (111) Surfaces from Molecular Dynamics Simulations Validated with Experiment”, J. Am. Chem. Soc.Vol 127 , 1563-1575 , (2005)
    [51] E. Spohr ,” Effect of electrostatic boundary conditions and system size on the interfacial properties of water and aqueous solutions”, J. Chem. Phys. 107 (16), 22 October 1997
    [52] I.-C. Yeh and M. L. Berkowitz , “Ewald summation for systems with slab geometry”,J. Chem. Phys., Vol. 111, No. 7, 15 August 1999

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE