研究生: |
江承紘 Chiang, Cheng-Hung |
---|---|
論文名稱: |
再談 n 個連續網格點的線段上之 k-服務器問題 k-server Problem on a Line Segment with n Contiguous Grid Points: Revisited |
指導教授: |
韓永楷
Hon, Wing-Kai |
口試委員: |
蔡孟宗
Tsai, Meng-Tsung 王弘倫 Wang, Hung-Lung |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 33 |
中文關鍵詞: | k-服務器問題 、馬可夫鏈 、出生–死亡過程 |
外文關鍵詞: | k-server Problem, Markov Chain, Birth-death Process |
相關次數: | 點閱:38 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文延續前人 (林程富~2022) 有關 n 個連續網格點的線段上之新型 k-服務器問題的研究。
與前人不同的是,我們考慮每個時間點有兩個不同位置的請求同時出現(而非一個位置),
並設計了確定性演算法以最小化錯失率。
針對請求的出現,我們討論最壞情況和隨機輸入情況。
在最壞情況中,演算法必須良好地處理對所有可能的請求序列。
而隨機輸入情況中,我們專注在分析演算法的期望錯失率。
This thesis continues Lin's work of ``A New $k$-server Problem on a Line Segment with $n$ Contiguous Grid points" (2022). Different from Lin's work, we consider scenarios where requests from two different locations appear simultaneously at each time (instead of one location),
and design deterministic algorithms to minimize the miss rate.
We discuss both the worst-case and the randomized input scenarios for the occurrence of requests.
In the worst-case scenario, the algorithm must handle all possible request sequences effectively.
For the randomized input scenario, we focus on analyzing the expected miss rate of the algorithm.
[1] D. Bertsimas, P. Jaillet, and N. Korolko. The K-Server Problem via a Modern Opti- mization Lens. European Journal on Operational Research, 276(1):65–78, 2019.
[2] C. Coester. Competitive Analysis of K-Server Variants and Metrical Task Systems. PhD thesis, University of Oxford, UK, 2020.
[3] E. Koutsoupias and D. S. Taylor. The CNN Problem and Other K-Server Variants. Theoretical Computer Science, 324(2-3):347–359, 2004.
[4] P. Krnetic, D. Melnyk, Y. Wang, and R. Wattenhofer. The K-Server Problem with Delays on the Uniform Metric Space. In Proceedings of International Symposium on Algorithms and Computation (ISAAC), volume 181, pages 61:1–61:13, 2020.
[5] M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive Algorithms for On- line Problems. In Proceedings of ACM Symposium on Theory of Computing (STOC), pages 322–333, 1988.