簡易檢索 / 詳目顯示

研究生: 林彥興
Lin, Yen-Hsing
論文名稱: 模擬星系團中宇宙射線主導黑洞噴流的影響
Simulating the effects of cosmic-ray dominated black-hole jets in galaxy clusters
指導教授: 楊湘怡
Yang, Hsiang-Yi Karen
口試委員: 平下博之
Hirashita, Hiroyuki
潘國全
Pan, Kuo-Chuan
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Institute of Astronomy
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 58
中文關鍵詞: 磁流體力學活躍星系核回饋星系形成與演化數值模擬活躍星系核星系團星系團內介質宇宙射線噴流
外文關鍵詞: Magnetohydrodynamics, AGN Feedback, Galaxy Formation and Evolution, Numerical Simulation, Active Galactic Nuclei, Galaxy Clusters, Intracluster Medium, Cosmic-rays, Jets
相關次數: 點閱:36下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 來自活躍星系核噴流(active galactic nuclei jets)的回饋,被認為是最能有效抑制冷核星系團中冷卻流形成的機制之一。然而,噴流回饋的詳細機制仍有待釐清。在這篇論文中,我們旨在瞭解宇宙射線(cosmic-ray, CR)主導的噴流所提供的回饋,以及其與新發現的奇異電波圈(odd radio circles, ORCs)之間的潛在聯繫。

    本論文的主要內容可以分為兩個部分。在第一部分(Chapter 2),我們通過使用三維宇宙射線磁流體力學(CR-MHD)模擬程式FLASH,研究宇宙射線質子(cosmic-ray protons, CRp)和宇宙射線電子(cosmic-ray electrons, CRe)主導的噴流與噴流產生的泡泡(bubbles)的演化和反饋效應。我們研究了它們的能量、動力學和加熱能力的演化,並計算了它們的X射線功率與無線電光度之間的關係(P_cav-L_R)。我們發現,即使宇宙射線電子泡泡明顯受到更強的同步輻射與逆康普頓冷卻,兩種泡泡的演化依然非常相似。這是因為隨著宇宙射線電子失去能量,泡泡會在約三千萬年內迅速變成由熱能主導。此時,它們的總能量將停止隨著宇宙射線能量的減少而下降,使得兩種泡泡走向相似的演化路徑。兩種泡泡對星系團內介質(ICM)的加熱能力也相當,通過局部熱不穩定形成的冷氣體在兩種情況下都被有效抑制。兩種泡泡在P_{cav-L_R平面上遵循不同的演化軌跡,但其數值與星系團中泡泡的觀測範圍大致相同。我們也討論了可能可以用於區別泡泡能量組成的觀測方法。

    在第二部分(Chapter 3),我們研究了新發現的奇異電波圈是「平行視線方向的活躍星系核噴流產生的泡泡」的可能性。我們使用FLASH進行三維CR-MHD模擬,並預測了在強子輻射機制下,活躍星系核噴流產生的泡泡的無線電形態。我們發現,功率強且持續時間長的宇宙射線主導噴流,可以在低質量(M_vir ~ 8e12 - 8e13 M_sun)星系團中創造與觀測到的奇異電波圈大小相似(約三十至六十萬秒差距)的無線電天體。噴流能量相同時,持續時間更長(因此功率較低)的噴流往往會創造更大的泡泡,因為高功率噴流會產生強烈的震波,帶走大部分的噴流能量。奇異電波圈邊緣較亮的特徵,可以自然的以強子輻射機制解釋。我們因此認為宇宙射線主導的活躍星系核噴流是奇異電波圈的可能起源。


    Jet feedback from active galactic nuclei (AGNs) is one of the most promising mechanisms for suppressing cooling flows in cool-core clusters. Despite its importance, the detail mechanisms underlying jet-mode feedback remain poorly understood. In this thesis, we aim to understand AGN feedback provided by cosmic-ray (CR) dominated jets, and its potential connection to the newly discovered odd radio circles (ORCs).

    The main content of this thesis can be divided into two parts. In the first part (Chapter 2), we investigate the the evolution and feedback effects of cosmic-ray proton (CRp) and cosmic-ray electron (CRe) dominated jets by conducting three-dimensional (3D) cosmic-ray (CR) magnetohydrodynamic (MHD) simulations of AGN jet-inflated bubbles in the intracluster medium using the FLASH code. We present the evolution of their energies, dynamics and heating, and model their expected cavity-power versus radio-luminosity relation (P_cav-L_R).
    We find that bubbles inflated by CRe dominated jets follow a very similar dynamical evolution to CRp dominated bubbles even though CRe within bubbles suffer significantly stronger synchrotron and inverse-Compton cooling. This is because, as CRe lose their energy, the jet-inflated bubbles quickly become thermally dominated within ~30 Myr. Their total energy stops decreasing with CR energy and evolves similarly to CRp dominated bubbles.
    The ability of CRe and CRp dominated bubbles to heat the intracluster medium is also comparable; the cold gas formed via local thermal instabilities is well suppressed in both cases. The CRp and CRe bubbles follow different evolutionary trajectories on the P_cav-L_R plane, but the values are broadly consistent with observed ranges for bubbles in galaxy clusters. We also discuss observational techniques that have potential for constraining the composition of AGN jets and bubbles.

    In the second part (Chapter 3), we investigate the possibility that the newly discovered ORCs may be end-on AGN jet-inflated bubbles.
    We carry out 3D CR-MHD simulations using the FLASH code and predict the radio morphology of the AGN jet-inflated bubbles considering hadronic emission mechanisms. We find that powerful and long-duration CR-dominated jets can create radio objects with similar sizes (roughly 300-600 kpc) to the observed ORCs in low-mass (M_vir ~ 8e12 - 8e13 M_sun) clusters. For the same input jet energy, longer-duration (thus lower-power) jets tend to create larger bubbles since high-power jets tend to generate strong shocks that carry away a significant portion of the jet energy. The edge-brightening feature of the ORCs is naturally reproduced in the hadronic scenario. We conclude that CR-dominated AGN jets could be a plausible origin of the ORCs.

    Abstract (Chinese) I Acknowledgements (Chinese) III Abstract VI Acknowledgements VIII Contents XIII List of Figures XV List of Tables XIX 1 Introduction 1 2 Evolution and Feedback of AGN Jets of Different Cosmic-ray Composition 4 2.1 Introduction 4 2.2 Methods 7 2.2.1 Cosmic-ray physics 8 2.2.2 Simulation setup 12 2.3 Results 14 2.3.1 Bubble evolution 14 2.3.2 Energy evolution 15 2.3.3 Cold gas evolution and CR heating 17 2.3.4 Observable properties in radio 21 2.4 Discussion 24 2.5 Conclusions 28 3 Odd Radio Circles as End-on Cosmic-ray Dominated AGN Jet inflated Bubbles 32 3.1 Introduction 32 3.2 Methods 34 3.2.1 3D-CRMHD formalism and simulation technique 34 3.2.2 Setup of the cluster environment 35 3.3.3 Mock observations 36 3.3 Results 37 3.3.1 Benchmark cases 37 3.3.2 Parameter search 40 3.4 Discussion 45 3.4.1 Key mechanisms for reproducing ORC features 45 3.4.2 Is the energy injection reasonable? 46 3.5 Conclusions 47 4 Summary 49 Bibliography 52

    Adam, R., Adane, A., Ade, P. A. R., et al. 2018, A&A, 609, A115, doi: 10.1051/ 0004-6361/201731503
    Anglés-Alcázar, D., Faucher-Giguère, C.-A., Quataert, E., et al. 2017, MNRAS, 472, L109, doi: 10.1093/mnrasl/slx161
    Astropy Collaboration, Price-Whelan, A. M., Lim, P. L., et al. 2022, ApJ, 935,
    167, doi: 10.3847/1538-4357/ac7c74
    Bambic, C. J., Morsony, B. J., & Reynolds, C. S. 2018, ApJ, 857, 84, doi: 10.
    3847/1538-4357/aab558
    Barai, P., Murante, G., Borgani, S., et al. 2016, MNRAS, 461, 1548, doi: 10.1093/
    mnras/stw1389
    Barai, P., Viel, M., Murante, G., Gaspari, M., & Borgani, S. 2014, MNRAS, 437,
    1456, doi: 10.1093/mnras/stt1977
    Beckmann, R. S., Dubois, Y., Pellisier, A., et al. 2022, arXiv e-prints,
    arXiv:2204.03629. https://arxiv.org/abs/2204.03629
    Birkinshaw, M. 1999, PhR, 310, 97, doi: 10.1016/S0370-1573 (98)00080-5
    Bîrzan, L., McNamara, B. R., Nulsen, P. E. J., Carilli, C. L., & Wise, M. W. 2008, ApJ, 686, 859, doi: 10.1086/591416
    Blandford, R., Meier, D., & Readhead, A. 2019, ARA&A, 57, 467, doi: 10.1146/
    annurev-astro-081817-051948
    Bourne, M. A., & Yang, H.-Y. K. 2023, Galaxies, 11, 73, doi: 10.3390/ galaxies11030073
    Byrne, L., Faucher-Giguère, C.-A., Stern, J., et al. 2023, MNRAS, 520, 722, doi: 10.1093/mnras/stad171
    Carilli, C. L., & Taylor, G. B. 2002, ARA&A, 40, 319, doi: 10.1146/annurev. astro.40.060401.093852
    Cavagnolo, K. W., McNamara, B. R., Nulsen, P. E. J., et al. 2010, ApJ, 720, 1066, doi: 10.1088/0004-637X/720/2/1066
    Croston, J. H., Ineson, J., & Hardcastle, M. J. 2018, MNRAS, 476, 1614, doi: 10.1093/mnras/sty274
    De Young, D. S. 2006, ApJ, 648, 200, doi: 10.1086/505861
    Dicker, S. R., Ade, P. A. R., Aguirre, J., et al. 2014, Journal of Low Temperature
    Physics, 176, 808, doi: 10.1007/s10909-013-1070-8
    Dubey, A., Reid, L. B., & Fisher, R. 2008, Physica Scripta, T132, 014046
    Dunn, R. J. H., & Fabian, A. C. 2004, MNRAS, 355, 862, doi: 10.1111/j.
    1365-2966.2004.08365.x
    Dunn, R. J. H., Fabian, A. C., & Taylor, G. B. 2005, MNRAS, 364, 1343, doi: 10. 1111/j.1365-2966.2005.09673.x
    Ehlert, K., Weinberger, R., Pfrommer, C., Pakmor, R., & Springel, V. 2018, arXiv: 1806.05679. https://arxiv.org/abs/1806.05679
    Fabian, A. C. 2012, ARA&A, 50, 455, doi:10.1146/annurev-astro-081811-125521
    Fabian, A. C., Walker, S. A., Russell, H. R., et al. 2017, MNRAS, 464, L1, doi: 10.
    1093/mnrasl/slw170
    Fanaroff, B. L., & Riley, J. M. 1974, MNRAS, 167, 31P, doi: 10.1093/mnras/167.1.31P
    Fryxell, B., Olson, K., Ricker, P., et al. 2000, ApJS, 131, 273, doi: 10.1086/317361
    Gaspari, M., Ruszkowski, M., & Sharma, P. 2012, ApJ, 746, 94, doi: 10.1088/ 0004-637X/746/1/94
    Ghisellini, G. 2013, Radiative Processes in High Energy Astrophysics, Vol. 873, doi: 10.1007/978-3-319-00612-3
    Guo, F., & Mathews, W. G. 2011, ApJ, 728, 121, doi: 10.1088/0004-637X/728/ 2/121
    Guo, F., & Oh, S. P. 2008, MNRAS, 384, 251, doi: 10.1111/j.1365-2966.2007.
    12692.x
    Gupta, N., Huynh, M., Norris, R. P., et al. 2022, PASA, 39, e051, doi: 10.1017/ pasa.2022.44
    Hardcastle, M. J., Williams, W. L., Best, P. N., et al. 2019, A&A, 622, A12, doi: 10.1051/0004-6361/201833893
    Hillel, S., & Soker, N. 2016, MNRAS, 455, 2139, doi: 10.1093/mnras/stv2483
    Ineson, J., Croston, J. H., Hardcastle, M. J., & Mingo, B. 2017, MNRAS, 467, 1586, doi: 10.1093/mnras/stx189
    Jiang, Y.-F., & Oh, S. P. 2018, ApJ, 854, 5, doi: 10.3847/1538-4357/aaa6ce
    Jonas, J., & MeerKAT Team. 2016, in MeerKAT Science: On the Pathway to the SKA, 1, doi: 10.22323/1.277.0001
    Kaiser, N. 1986, MNRAS, 222, 323
    Kardashev, N. S. 1962, Soviet Ast., 6, 317
    Koribalski, B. S., Norris, R. P., Andernach, H., et al. 2021, MNRAS, 505, L11,
    doi: 10.1093/mnrasl/slab041
    Koribalski, B. S., Veronica, A., Brüggen, M., et al. 2023, arXiv e-prints, arXiv:2304.11784, doi: 10.48550/arxiv.2304.11784
    Kulsrud, R., & Pearce, W. P. 1969, ApJ, 156, 445, doi: 10.1086/149981
    Laing, R. A., Canvin, J. R., Bridle, A. H., & Hardcastle, M. J. 2006, MNRAS, 372, 510, doi: 10.1111/j.1365-2966.2006.10903.x
    Li, Y., Ruszkowski, M., & Bryan, G. L. 2017, ApJ, 847, 106, doi: 10.3847/ 1538-4357/aa88c1
    Lin, Y.-H., Yang, H. Y. K., & Owen, E. R. 2023, MNRAS, 520, 963, doi: 10.1093/
    mnras/stad185
    Mannheim, K., & Schlickeiser, R. 1994, A&A, 286, 983
    Mathews, W. G., & Brighenti, F. 2008, ApJ, 685, 128, doi: 10.1086/590402
    McCourt, M., Parrish, I. J., Sharma, P., & Quataert, E. 2011, MNRAS, 413, 1295, doi: 10.1111/j.1365-2966.2011.18216.x
    McNamara, B. R., & Nulsen, P. E. J. 2007, ARA&A, 45, 117, doi: 10.1146/ annurev.astro.45.051806.110625
    -. 2012, New Journal of Physics, 14, 055023, doi: 10.1088/1367-2630/14/5/ 055023
    Miniati, F., Jones, T. W., Kang, H., & Ryu, D. 2001, ApJ, 562, 233, doi: 10.
    1086/323434
    Navarro, J. F., Frenk, C. S., & White, S. D. M. 1995, MNRAS, 275, 720
    1996, ApJ, 462, 563, doi: 10.1086/177173
    Norris, R. P., Intema, H. T., Kapińska, A. D., et al. 2021a, PASA, 38, e003,
    doi: 10.1017/pasa. 2020.52
    Norris, R. P., Marvil, J., Collier, J. D., et al. 2021b, PASA, 38, e046, doi: 10. 1017/pasa.2021.42
    Norris, R. P., Collier, J. D., Crocker, R. M., et al. 2022, MNRAS, 513, 1300, doi: 10.1093/mnras/stac701
    O'Sullivan, E., Giacintucci, S., David, L. P., et al. 2011, ApJ, 735, 11, doi: 10. 1088/0004-637X/735/1/113
    Owen, E. R., Jacobsen, I. B., Wu, K., & Surajbali, P. 2018, MNRAS, 481, 666, doi: 10.1093/mnras/sty2279
    Owen, E. R., & Yang, H. Y. K. 2022, arXiv e-prints, arXiv:2111.01402. https: //arxiv.org/abs/2111.01402
    Pfrommer, C., Enẞlin, T. A., & Sarazin, C. L. 2005, A&A, 430, 799, doi: 10.1051/
    0004-6361:20041576
    Reynolds, C. S., Balbus, S. A., & Schekochihin, A. A. 2015, ApJ, 815, 41, doi: 10. 1088/0004-637X/815/1/41
    Ruszkowski, M., Yang, H. Y. K., & Reynolds, C. S. 2017, ApJ, 844, 13, doi: 10. 3847/1538-4357/aa79f8
    Sarazin, C. L. 1986, Reviews of Modern Physics, 58, 1, doi: 10.1103/RevModPhys.58.1
    Schive, H.-Y., ZuHone, J. A., Goldbaum, N. J., et al. 2018, MNRAS, 481, 4815, doi: 10.1093/mnras/sty2586
    Shabala, S. S., Jurlin, N., Morganti, R., et al. 2020, MNRAS, 496, 1706, doi: 10. 1093/mnras/staa1172
    Su, K.-Y., Hopkins, P. F., Bryan, G. L., et al. 2021, MNRAS, 507, 175, doi: 10. 1093/mnras/stab2021
    Sunyaev, R. A., & Zeldovich, Y. B. 1972, Comments on Astrophysics and Space Physics, 4, 173
    Sutherland, R. S., & Dopita, M. A. 1993, ApJS, 88, 253, doi: 10.1086/191823
    Thomas, T., & Pfrommer, C. 2019, MNRAS, 485, 2977, doi: 10.1093/mnras/
    stz263
    Turk, M. J., Smith, B. D., Oishi, J. S., et al. 2011, ApJS, 192, 9, doi: 10.1088/
    0067-0049/192/1/9
    Vazza, F., Wittor, D., Brunetti, G., & Brüggen, M. 2021, A&A, 653, A23, doi: 10. 1051/0004-6361/202140513
    Vazza, F., Wittor, D., Di Federico, L., et al. 2023, A&A, 669, A50, doi: 10.1051/ 0004-6361/202243753
    Wentzel, D. G. 1974, ARA&A, 12, 71, doi: 10.1146/annurev.aa.12.090174.
    000443
    XRISM Science Team. 2020, arXiv e-prints, arXiv:2003.04962, doi: 10.48550/ arXiv.2003.04962
    Yang, H. Y. K., Gaspari, M., & Marlow, C. 2019, ApJ, 871, 6, doi: 10.3847/
    1538-4357/aaf4bd
    Yang, H.-Y. K., & Reynolds, C. S. 2016a, ApJ, 818, 181, doi: 10.3847/0004-637X/818/2/181
    -. 2016b, ApJ, 829, 90, doi: 10.3847/0004-637X/829/2/90
    Yang, H.-Y. K., & Ruszkowski, M. 2017, ApJ, 850, 2, doi: 10.3847/1538-4357/
    aa9434
    Yang, H.-Y. K., Ruszkowski, M., Ricker, P. M., Zweibel, E., & Lee, D. 2012, ApJ,
    761, 185, doi: 10.1088/0004-637X/761/2/185
    Yang, T., Davé, R., Cui, W., et al. 2023, arXiv e-prints, arXiv:2305.00602, doi: 10.
    48550/arXiv.2305.00602
    Yoast-Hull, T. M., Everett, J. E., Gallagher, III, J. S., & Zweibel, E. G. 2013,
    ApJ, 768, 53, doi: 10.1088/0004-637X/768/1/53
    Zweibel, E. G. 2013, Physics of Plasmas, 20, 055501, doi: 10.1063/1.4807033
    .2017, Physics of Plasmas, 24, 055402, doi: 10.1063/1.4984017

    QR CODE