研究生: |
張恆維 Chang, Heng-Wei |
---|---|
論文名稱: |
共形對稱破缺之二次型重力理論 Quadratic Gravity Theories with Broken Conformal Symmetry |
指導教授: |
朱創新
Chu, Chong-Sun |
口試委員: |
吳思曄
Wu, Si-Ye 陳江梅 Chen, Chiang-Mei |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 60 |
中文關鍵詞: | 二次型重力 、宇宙學 、球對稱時空 、平行傳播時空 、暗能量 |
外文關鍵詞: | Quadratic Gravity, Cosmology, Spherically Symmetric Space-time, pp- wave space-time, Dark Energy |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在論文的第一部分,我們簡扼介紹了二次型重力理論並論證了純二次型重力理論不滿足一些物理要求。因此,在第二章節我們開始著手研究耦合於純量場並且共形對稱破缺的二次型重力理論的解析性質,並在宇宙學背景下,我們發現了這個理論的運動方程式有著部分可積性,同時我們也給出了一些簡單的宇宙學解析解。在第三章裡,我們發現了一個可能可以解決暗能量問題非平凡真空解析解。利用該真空解析解所提供的最佳擬合參數,我們找出了能夠與超新星數據良好擬合併能夠外插至宇宙學復合時期紅移量的宇宙學數值解。在第四章節中,我們發現了一族純二次型重力理論的球對稱解析解,但這些解析解的事件視界卻是由真實且可察覺的裸奇點所構成的超曲面,這再次反映了純二次型重力理論的非物理的性質。在最後一個章節裡,我們證明了在平行傳播時空裡,假如本模型中的純量場在平行傳播波的波前上是常數且非奇異的,那麼在每個 x-y 平面上此純量場都必須是常數,而最後我們也給出了一般解。
In the first chapter of this thesis, we give a brief introduction to the quadratic gravities and suggest the impossibility of pure quadratic gravities. Subsequently, in the second chapter, we study the analytic perspective of quadratic gravity theories coupled to a scalar field with broken conformal symmetry. In the cosmological setting, we find that the equation of motion is partially integrable, and some trivial exact solutions are given. In the third chapter, exact nontrivial solutions to this model are found, which could solve the dark energy problem. Around the parameters suggested by this exact vacuum solution, we find numerical solutions with the presence of radiation and cold dust which fit the Hubble parameter with the supernova data well and are extensible to the recombination redshift. In the fourth chapter, we give a family of exact spherically symmetric solutions of the pure quadratic gravities whose event horizons are hypersurfaces of true, detectable and naked singularities, which again suggests that the pure quadratic gravities are unphysical. In the last chapter, we prove that the scalar field must be constant on each x-y plane provided that the scalar field is constant on each wave-front of the pp-wave and non-singular.
[1] S. Deser. A short pre-history of quantum gravity. Am. J. Phys., 90(4):249, 2022.
[2] Assaf Shomer. A Pedagogical explanation for the non-renormalizability of gravity. 9 2007.
[3] Miao Li, Xiao-Dong Li, Shuang Wang, and Yi Wang. Dark Energy: A Brief Review. Front. Phys. (Beijing), 8:828–846, 2013.
[4] Gianfranco Bertone and Dan Hooper. History of dark matter. Rev. Mod. Phys., 90:045002, 2018.
[5] Andrei D. Linde. Inflationary Cosmology. Lect. Notes Phys., 738:1–54, 2008.
[6] Andrew R. Liddle and David H. Lyth. Cosmological Inflation and Large-Scale Structure. Cambridge University Press, 2000.
[7] Andrei D. Linde. Chaotic Inflation. Phys. Lett. B, 129:177–181, 1983.
[8] K. S. Stelle. Renormalization of higher-derivative quantum gravity. Phys. Rev. D, 16:953–969, 1977.
[9] Tirthabir Biswas, Aindriú Conroy, Alexey S Koshelev, and Anupam Mazumdar. Generalized ghost-free quadratic curvature gravity. Classical and Quantum Gravity, 31(1):015022, 2013.
[10] A. A. Starobinsky. A new type of isotropic cosmological models without singularity. Physics Letters B, 91(1):99–102, 1980.
[11] Alexandros Kehagias, Azadeh Moradinezhad Dizgah, and Antonio Riotto. Remarks on the starobinsky model of inflation and its descendants. Physical Review D, 89(4), 2014.
[12] Philip D. Mannheim. Making the Case for Conformal Gravity. Found. Phys., 42:388–420, 2012.
[13] Philip D. Mannheim and Demosthenes Kazanas. Exact Vacuum Solution to Conformal Weyl Gravity and Galactic Rotation Curves. Astrophys. J., 342:635–638, 1989.
[14] Philip D. Mannheim. Conformal gravity and the flatness problem. The Astrophysical Journal, 391:429–432, 1992.
[15] D. Elizondo and G. Yepes. Can conformal weyl gravity be considered a viable cosmological theory? The Astrophysical Journal, 428:17, 1994.
[16] A.Rod Gover and Paweł Nurowski. Obstructions to conformally einstein metrics in n dimensions. Journal of Geometry and Physics, 56(3):450 – 484, 2006.
[17] Robert M. Wald and Andreas Zoupas. A General definition of ’conserved quantities’ in general relativity and other theories of gravity. Phys. Rev. D, 61:084027, 2000.
[18] Massimiliano Rinaldi and Luciano Vanzo. Inflation and reheating in theories with spontaneous scale invariance symmetry breaking. Physical Review D, 94(2), 2016.
[19] Giovanni Tambalo and Massimiliano Rinaldi. Inflation and reheating in scale-invariant scalar-tensor gravity. General Relativity and Gravitation, 49(4), 2017.
[20] Silvia Vicentini, Luciano Vanzo, and Massimiliano Rinaldi. Scale-invariant inflation with one-loop quantum corrections. Physical Review D, 99(10), 2019.
[21] Sergei D. Odintsov, Diego Sáez-Chillón Gómez, and German S. Sharov. Analyzing the h0 tension in f(r) gravity models. Nuclear Physics B, 966:115377, 2021.
[22] Eleonora Di Valentino, Olga Mena, Supriya Pan, Luca Visinelli, Weiqiang Yang, Alessandro Melchiorri, David F Mota, Adam G Riess, and Joseph Silk. In the realm of the hubble tension—a review of solutions. Classical and Quantum Gravity, 38(15):153001, 2021.
[23] Andrew R Liddle and David H Lyth. Cosmological Inflation and Large-Scale Structure. Cambridge Univ. Press, Cambridge, 2000.
[24] Alex Elías-Zúñiga. Exact solution of the cubic-quintic duffing oscillator. Applied Mathematical Modelling, 37(4):2574–2579, 2013.
[25] Edmund J. Copeland, M. Sami, and Shinji Tsujikawa. Dynamics of dark energy. International Journal of Modern Physics D, 15(11):1753–1935, 2006.
[26] Shulei Cao, Tong-Jie Zhang, Xinya Wang, and Tingting Zhang. Cosmological Constraints on the Coupling Model from Observational Hubble Parameter and Baryon Acoustic Oscillation Measurements. Universe, 7(3):57, 2021.
[27] G.S. Sharov and V.O. Vasiliev. How predictions of cosmological models depend on hubble parameter data sets. Mathematical Modelling and Geometry, 6(1), 2018.
[28] N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J.
Banday, R. B. Barreiro, N. Bartolo, and et al. Planck 2018 results. Astronomy and Astrophysics, 641:A6, 2020.
[29] Pavel Kroupa, Ladislav Subr, Tereza Jerabkova, and Long Wang. Very high redshift quasars and the rapid emergence of super-massive black holes. Monthly Notices of the Royal Astronomical Society, 2020.
[30] Neal Jackson. The hubble constant. Living Reviews in Relativity, 10(1), 2007.
[31] Edward Witten. Light rays, singularities, and all that. Reviews of Modern Physics, 92(4), 2020.
[32] Roger Penrose. The question of cosmic censorship. J. Astrophys. Astron., 20:233–248, 1999.