研究生: |
吳愷軒 Wu, Kai-Hsuan |
---|---|
論文名稱: |
快速熱處理之非晶矽致冷晶片之研究 The Study on the Amorphous Silicon Thermoelectric Cooler with Rapid Thermal Processing |
指導教授: |
徐永珍
Hsu, Klaus Yung-Jane |
口試委員: |
江雨龍
Jiang, Yeu-Long 賴宇紳 Lai, Yu-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2020 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 51 |
中文關鍵詞: | 非晶矽 、致冷晶片 、快速熱處理 |
外文關鍵詞: | amorphous silicon, thermoelectric cooler, RTP |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來主流應用於室溫的熱電材料為稀少且有毒的元素如銻、鉍和碲,使得熱電材料的發展受到很大的限制,而非晶矽儘管在室溫下的熱電優值差強人意,卻有著取得容易且對環境友善的優點,因此本論文會以非晶矽作為基礎,探討N型和P型的非晶矽在經過不同的快速熱處理的條件後,於室溫下的熱電優值,期望能突破非晶矽在熱電材料應用上的先天限制。
我們選用導熱度極佳的氮化鋁作為基板,在上面先以電子鎗鍍上適當的背電極圖形,接著以電漿增強化學氣相沉積法分別沉積出N型、P型和本徵的非晶矽後,再同樣以電子鎗鍍上正電極,使得電流能在基板的垂直方向上流動,形成一端為吸熱端,另一端為放熱端的構造,最後我們再對其快速熱處理,並比較快速熱處理前後的熱電優值。
量測結果發現,藉由適當的快速熱處理,可以在維持住塞貝克係數和導熱率的條件下,大幅提升導電率,進而改善非晶矽的熱電優值。
The dominant thermoelectric materials nowadays used in the room temperature range usually contain rare and toxic elements like antimony, bismuth and tellurium. It greatly restricts the development of the thermoelectric materials. Meanwhile, silicon is environment friendly and has been used in semiconductor industry a lot for decades despite its poor thermoelectric figure of merit. In this thesis, n-type and p-type amorphous silicon with different rapid thermal processing is used to compare the thermoelectric figure of merit at room temperature. The breakthrough of the thermoelectric application of silicon at room temperature is expected.
The substrate is aluminum nitride mainly because of its good thermal conductivity. The first layer is patterned titanium plated by e-gun. The second layer is patterned n-type or p-type amorphous silicon by plasma-enhanced chemical vapor deposition. The third layer is patterned titanium also plated by e-gun. Therefore, when voltage is supplied, current flows in the vertical direction, which makes the one side heat-absorbed and the other side heat-released. Last, rapid thermal processing was applied to elevate the thermoelectric figure of merit.
The result reveals that the electrical conductivity increases sharply but the thermal conductivity and the Seebeck coefficient are kept under specific rapid thermal processing condictions. This elevated the thermoelectric figure of merit as a result.
[1] C. Wood, “Materials for thermoelectric energy conversion,” Reports on Progress in Physics, Volume 51, Number 4, Pg 459 (1988).
[2] H.J. Goldsmid, R.W. Douglas, “The use of semiconductors in thermoelectric refrigeration,” British Journal of Applied physics, 5, 386-390(1954).
[3] A.F. Ioffe, “Semiconductor Thermoelements and Thermoelectric Cooling,” Infosearch, Ltd., London (1957).
[4] L.D. Hicks, and M.S. Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor,” Phys. Rev. B, 47, 16631 (1993).
[5] L.D. Hicks, T.C. Harman, X. Sun, M.S. Dresselhaus, “Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit,” Phys. Rev. B, 53, R10493 (1996).
[6] S.S. Siouane, S. Jovanovic, P. Poure, “A Novel Identification Method of Thermal Resistances of Thermoelectric Modules Combining Electrical Characterization Under Constant Temperature and Heat Flow Conditions,” Transactions on Environment and Electrical Engineering 1(4):44 (2016).
[7] A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.K. Yu, W.A. Goddard III, J.R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451, 168–171 (2008).
[8] S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, J.P. Fleurial, “Nanostructured bulk silicon as an effective thermoelectric material,” Adv. Funct. Mater. 19, 2445–2452 (2009).
[9] J. Tang, H.T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, P. Yang, “Holey silicon as an efficient thermoelectric material,” Nano Lett. 10, 4279–4283 (2010).
[10] M. Nomura, Y. Kage, D. Muller, D. Moser, O. Paul, “Electrical and thermal properties of polycrystalline Si thin films with phononic crystal nanopatterning for thermoelectric applications,” Appl. Phys. Lett. 106, 223106 (2015).
[11] A. Miura, S. Zhou, T. Nozaki, J. Shiomi, “Crystalline−amorphous silicon nanocomposites with reduced thermal conductivity for bulk thermoelectrics,” ACS Appl. Mater. Interfaces 7, 13484–13489 (2015).
[12] E.W. Grob, “Thermo-Electric Coolers NASA GSFC,” Thermal & Fluids Analysis Workshop, NASA Langley Research Center, Newport News, VA (2011).
[13] M.C. Wingert, J. Zheng, S. Kwon, R. Chen, “Thermal transport in amorphous materials: A review,” Semicond. Sci. Technol. 31, 113003 (2016).
[14] L. Pauw, “A method of measuring specific resistivity and Hall effect of discs of arbitary shape,” Philips Tech. Rev. 13 1–9 (1958).
[15] D.K. Schroder, “Semiconductors material and device characterization,” 3rd ed. New York: Wiley (2005).
[16] R. Labie, T. Bearda, O.E. Daif, B. O’Sullivan, K. Baert, I. Gordon, “Resistance and passivation of metal contacts using n-type amorphous Si for Si solar cells,” Journal of Applied Physics 115(18):183508-183508-8 (2014).
[17] C.H. Henager, W.T. Pawlewicz, “Thermal conductivities of thin sputtered optical films,” Applied optics, Vol. 32, pp.91-100 (1993).
[18] H.S. Carslaw, J.C. Jaeger, “Conduction of Heat in Solids,” Oxford U. Press, New York, pp. 214-216 (1947).
[19] N. Hoang, Ö. Vallin, J. Panda, M.V. Kamalakar, J. Guo, J. Luo, C. Wen, S.L. Zhang, Z.B. Zhang, “High thermoelectric power factor of p -type amorphous silicon thin films dispersed with ultrafine silicon nanocrystals,” Journal of Applied Physics 127(24):245304 (2020).
[20] D. Banerjee, Ö. Vallin, K.M. Samani, S. Majee, S.L. Zhang, J. Liu, Z.B. Zhang, “Elevated thermoelectric figure of merit of n-type amorphous silicon by efficient electrical doping process,” Nano Energy 44 89–94 (2018).
[21] T.K. Chuang, A. Usenko, J. Cites, “Bonding Energy of Silicon-to-Glass Wafer Bonding,” Conference: 218th Meeting of the Electrochemical Society (2010).
[22] B. Abramzon, "Numerical Optimization of the Thermoelectric Cooling Devices," Journal of Electronic Packaging 129(3): 339-347 (2007).
[23] Q. Zhang, X. Ai, L. Wang, Y. Chang, W. Luo, W. Jiang, L. Chen, “Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure,” Adv. Funct. Mater., 25 (6), pp. 966-976 (2015).
[24] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, “High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys,” Science 320, 634–638 (2008).
[25] J. Fu, S. Song, X. Zhang, F. Cao, L. Zhou, X. Li, H. Zhang, “Bi2Te3 nanoplates and nanoflowers: Synthesized by hydrothermal process and their enhanced thermoelectric properties,” Cryst. Eng. Commun. 14, (6), 2159 (2012).