簡易檢索 / 詳目顯示

研究生: 蕭筠樺
Hsiao, Yun-Hua
論文名稱: 產生大分子濃度組合之微流體晶片及其在小鼠胚胎幹細胞分化上之應用
A Continuous-Flow Cell Culture Array With Chaotic Mixers & Its Application in Identification of the Optimum Growth Factors Combinations for Mouse Embryonic Stem Cells Differentiation
指導教授: 范龍生
Fan, Long-Sheng
口試委員: 范龍生
Fan, Long-Sheng
張兗君
Chang, Yen-Chung
楊長豪
Yang, Chang-Hao
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 97
中文關鍵詞: 微流體微流體晶片幹細胞分化大分子混合
外文關鍵詞: microfluidic, Lab-on-Chip, mixer, stem cell, differentiation, concentration combination
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 心血管疾病與糖尿病一直名列於國人十大死因前三名,而目前以人工血管修復或替代因動脈病變而損壞的血管組織、以及進行洗腎動靜脈之廔管,就長期而言其再阻塞造成血栓的可能性以及非自體排斥,一直是需要克服的問題。利用胚胎幹細胞研究血管的再生技術,或許可以細胞治療的方法誘導血管修復、或是提供患者另一種移植血管的來源,免受自體或人工血管移植之苦。然而,若要將幹細胞應用於醫學,必須對其未分化/分化機制、分化路徑等作完整的了解。由於其於生物體中所處的複雜微環境包括化學、物理、機械等變因,一般的體外培養無法模仿其生理環境。而本論文即欲開發一微流體晶片來應用於幹細胞研究上,以快速檢視小鼠胚胎幹細胞於體外分化為血管細胞的最佳生長因子濃度組合。
    本研究旨在製作一微流體晶片,可以同時產生兩種生長因子VEGF及bFGF之多種濃度組合,並使小鼠胚胎幹細胞培養於內並進行長期分化,以快速找到最佳分化環境。為了達到此研究目的,針對生長因子此種大分子量之藥品進行濃度梯度產生器的設計。此外,考慮細胞的生長環境與生長因子的有效時限,本論文亦包括氧氣通透度、細胞培養於微流到元件之參數及溫度控制等參數之計算及測試。最後,本論文對元件設計中的濃度梯度產生器與微混合器進行功能性測試,驗證其功能;另外,亦針對小鼠胚胎幹細胞之分化結果,進行免疫螢光染色與微型生物分析儀兩種量測與分析,並針對分析方法進行比較。


    Stem cells differentiation relies on microenvironment control for inductive signaling and initiation. In finding the optimum growth factor (GF) combinations for mouse embryonic stem cells (mESCs) differentiation into endothelial cells (ECs) and smooth muscle cells (SMCs), which are important cells for building blood vessels, we developed a continuous-flow cell culture plate with integrated microfluidic mixers. The continuous feeding of medium allows us to conduct long-term differentiation process of the ECs without moving the plate conventionally needed for changing the medium and further reduces the autocrine and paracrine signaling. The need to continuously supply medium in a few 10’s L/hr to the cells etc. determines the flow velocity and the needed mixer channel length. Since the molecular weight of these GFs are typically a few 10’s~100’s kDa in sizes, a conventional serpentine mixer with diffusion-limited laminar flow mixing will not mix the molecules adequately within a millimeter-size microfluidics channel. Therefore, the cell culture plate consists of a 7-stage staggered-herringbone-ridge serpentine mixers that enable GFs to mix completely within a few millimeters, and an array of cell culture wells.

    目錄 中文摘要 i 英文摘要 ii 圖目錄 iii 表目錄 v 第一章、前言 1 1.1研究動機 1 1.2 背景與文獻回顧 1 1.2.1幹細胞特性與應用 1 1.2.2 血管系統的形成與分化 5 1.2.3生醫晶片簡介 6 1.3 研究目標 8 第二章、微流體晶片的設計與製造 11 2.1 濃度組合產生器設計 11 2.1.1 微流體特性 11 2.1.2 應用平面蜿蜒微混合器之濃度梯度 11 2.1.3 混沌式混合 15 2.2 本研究之晶片設計 17 2.3 微流體晶片之製造 20 2.3.1 SU8雙層結構之母模製程 20 2.3.2 PDMS翻模轉移法 25 2.3.3 PDMS氧氣通透度計算 30 第三章、小鼠胚胎幹細胞於微流道元件中之培養 32 3.1小鼠胚胎幹細胞的分化與培養 32 3.1.1 小鼠胚胎幹細胞來源與培養 32 3.1.2 飼養層的備製 33 3.1.3 小鼠胚胎幹細胞分化的生化指標— 鹼性磷酸酵素染色法 33 3.2 小鼠胚胎幹細胞培養於微流體晶片之參數測試 35 3.2.1 晶片前處理 35 3.2.2注入元件最佳濃度 35 3.2.3 元件基材選擇 37 3.2.4 元件基材表面修飾與步驟 38 3.2.5 細胞開始灌流時間 39 3.3細胞注入至晶片之流程 41 第四章、實驗方法 44 4.1連續灌流實驗系統的架設 44 4.1.1 溫度控制的計算 45 4.1.2 灌流系統架設步驟 46 4.2 濃度梯度產生器之量測方法 48 4.2.1 雷射共軛焦掃描顯微鏡原理與步驟 48 4.3 小鼠胚胎幹細胞分化之量測方法 50 4.3.1免疫螢光染色原理與步驟 50 4.4.3微型流式細胞儀--生物分析儀原理與步驟 54 第五章、實驗結果 60 5.1 微流體晶片混合功能與濃度組合之驗證 60 5.1.1有/無鯡魚型凹槽結構之微混合器混合效率比較與亂度分析 60 5.1.2 濃度梯度量測結果 64 5.1.3 討論 66 5.2 幹細胞於微流道分化之結果 69 5.2.1 長期培養之細胞型態 69 5.2.2 免疫螢光染色結果 72 5.2.3 生物分析儀結果 75 5.2.4 問題與討論 76 第六章、總結與未來工作 78 6.1 總結 78 6.2 建議與未來工作 78 6.2.1 空氣進入元件的問題之改良 78 6.2.2 以流體的控制改善量測的方法 79 參考文獻 81 附錄一、小鼠胚胎幹細胞之日常培養 85 附錄二、幹細胞分化為血管細胞的三種途徑相關文獻整理 87

    1. Berstine, E.G., et al., Alkaline phosphatase activity in mouse teratoma. Proc Natl Acad Sci U S A, 1973. 70(12): p. 3899-903.
    2. Nicolas, J.F., et al., [Mouse teratocarcinoma: differentiation in cultures of a multipotential primitive cell line (author's transl)]. Ann Microbiol (Paris), 1975. 126(1): p. 3-22.
    3. Quarterly, S.C., STEM CELL BIOENGINEERING, 2004, Science Creative Quarterly: Science Creative Quarterly.
    4. Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154-6.
    5. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
    6. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
    7. Wobus, A.M. and K.R. Boheler, Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev, 2005. 85(2): p. 635-678.
    8. McLaren, A., Ethical and social considerations of stem cell research. NATURE-LONDON-, 2001: p. 129-131.
    9. Lindvall, O., Z. Kokaia, and A. Martinez-Serrano, Stem cell therapy for human neurodegenerative disorders–how to make it work. 2004.
    10. Griffith, L.G. and G. Naughton, Tissue engineering--current challenges and expanding opportunities. Science, 2002. 295(5557): p. 1009-1014.
    11. Doetschman, T.C., et al., The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. Journal of embryology and experimental morphology, 1985. 87(1): p. 27-45.
    12. Descamps, B. and C. Emanueli, Vascular differentiation from embryonic stem cells: Novel technologies and therapeutic promises. Vascular Pharmacology, 2012.
    13. Gupta, K., et al., Lab-on-a-chip devices as an emerging platform for stem cell biology. Lab on a Chip, 2010. 10(16): p. 2019-2031.
    14. Fan, L.S., Y.C. Tai, and R.S. Muller, Ic-Processed Electrostatic Micromotors. Sensors and Actuators, 1989. 20(1-2): p. 41-47.
    15. Manz, A., N. Graber, and H.M. Widmer, Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sensors and Actuators B: Chemical, 1990. 1(1–6): p. 244-248.
    16. Unger, M.A., et al., Monolithic microfabricated valves and pumps by multilayer soft lithography. Science, 2000. 288(5463): p. 113-116.
    17. Gong, Q., et al., Design, optimization and simulation on microelectromagnetic pump. Sensors and Actuators A: Physical, 2000. 83(1-3): p. 200-207.
    18. Moroney, R., R. White, and R. Howe, Microtransport induced by ultrasonic Lamb waves. Applied Physics Letters, 1991. 59(7): p. 774-776.
    19. Woolley, A.T. and R.A. Mathies, Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proceedings of the National Academy of Sciences, 1994. 91(24): p. 11348-11352.
    20. Carlberg, B., et al., Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells. Biomed Mater, 2009. 4(4): p. 045004.
    21. Fritsch, M.K. and D.B. Singer, Embryonic stem cell biology. Adv Pediatr, 2008. 55: p. 43-77.
    22. Khademhosseini, A., et al., Co-culture of human embryonic stem cells with murine embryonic fibroblasts on microwell-patterned substrates. Biomaterials, 2006. 27(36): p. 5968-77.
    23. Adamo, L., et al., Biomechanical forces promote embryonic haematopoiesis. Nature, 2009. 459(7250): p. 1131-U120.
    24. Edgar, D., et al., Topography, stem cell behaviour, and organogenesis. Pediatr Surg Int, 2004. 20(10): p. 737-40.
    25. Parmar, K., et al., Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A, 2007. 104(13): p. 5431-6.
    26. Silvan, U., et al., Hypoxia and pluripotency in embryonic and embryonal carcinoma stem cell biology. Differentiation, 2009. 78(2-3): p. 159-68.
    27. Yamamoto, K., et al., Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am J Physiol Heart Circ Physiol, 2005. 288(4): p. H1915-24.
    28. Stolberg, S. and K.E. McCloskey, Can shear stress direct stem cell fate? Biotechnol Prog, 2009. 25(1): p. 10-9.
    29. White, F.M., Viscous fluid flow. Vol. 2. 1991: McGraw-Hill New York.
    30. Hatch, A., et al., A rapid diffusion immunoassay in a T-sensor. Nat Biotech, 2001. 19(5): p. 461-465.
    31. Brody, J.P. and P. Yager, Diffusion-based extraction in a microfabricated device. Sensors and Actuators A: Physical, 1997. 58(1): p. 13-18.
    32. Hessel, V., H. Lowe, and F. Schonfeld, Micromixers - a review on passive and active mixing principles. Chemical Engineering Science, 2005. 60(8-9): p. 2479-2501.
    33. Yang, Z., et al., Active micromixer for microfluidic systems using lead-zirconate-titanate(PZT)-generated ultrasonic vibration. Electrophoresis, 2000. 21(1): p. 116-119.
    34. Lee, M., et al., Wide bandwidth millimeter wave mixer using a diffusion cooled two-dimensional electron gas. Applied Physics Letters, 2001. 78(19): p. 2888-2890.
    35. Johnson, T.J., D. Ross, and L.E. Locascio, Rapid microfluidic mixing. Analytical Chemistry, 2002. 74(1): p. 45-51.
    36. Lu, L.H., K.S. Ryu, and C. Liu, A magnetic microstirrer and array for microfluidic mixing. Journal of Microelectromechanical Systems, 2002. 11(5): p. 462-469.
    37. Jeon, N.L., et al., Generation of solution and surface gradients using microfluidic systems. Langmuir, 2000. 16(22): p. 8311-8316.
    38. Lin, F., et al., Generation of dynamic temporal and spatial concentration gradients using microfluidic devices. Lab on a Chip, 2004. 4(3): p. 164-167.
    39. Dertinger, S.K.W., et al., Generation of gradients having complex shapes using microfluidic networks. Analytical Chemistry, 2001. 73(6): p. 1240-1246.
    40. Chung, B.G., et al., Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab on a Chip, 2005. 5(4): p. 401-6.
    41. Gobby, D., P. Angeli, and A. Gavriilidis, Mixing characteristics of T-type microfluidic mixers. Journal of Micromechanics and Microengineering, 2001. 11(2): p. 126-132.
    42. Liu, R.H., et al., Passive mixing in a three-dimensional serpentine microchannel. Journal of Microelectromechanical Systems, 2000. 9(2): p. 190-197.
    43. Stroock, A.D., et al., Chaotic mixer for microchannels. Science, 2002. 295(5555): p. 647-651.
    44. Whitesides, G.M., et al., Soft lithography in biology and biochemistry. Annual Review of Biomedical Engineering, 2001. 3(1): p. 335-373.
    45. Beebe, D.J., G.A. Mensing, and G.M. Walker, Physics and applications of microfluidics in biology. Annual Review of Biomedical Engineering, 2002. 4(1): p. 261-286.
    46. Aumiller, G., et al., Submicrometer resolution replication of relief patterns for integrated optics. Journal of Applied Physics, 1974. 45(10): p. 4557-4562.
    47. Xia, Y. and G.M. Whitesides, Soft lithography. Annual review of materials science, 1998. 28(1): p. 153-184.
    48. Abgrall, P., et al., SU‐8 as a structural material for labs‐on‐chips and microelectromechanical systems. Electrophoresis, 2007. 28(24): p. 4539-4551.
    49. Lorenz, H., et al., SU-8: a low-cost negative resist for MEMS. Journal of Micromechanics and Microengineering, 1997. 7: p. 121.
    50. Spiering, V.L., S. Bouwstra, and R.M.E.J. Spiering, On-chip decoupling zone for package-stress reduction. Sensors and Actuators A: Physical, 1993. 39(2): p. 149-156.
    51. Chaudhury, M.K. and G.M. Whitesides, Correlation between surface free energy and surface constitution. Science, 1992. 255(5049): p. 1230-1232.
    52. Fritz, J.L. and M.J. Owen, Hydrophobic recovery of plasma-treated polydimethylsiloxane. The Journal of Adhesion, 1995. 54(1-4): p. 33-45.
    53. Powers, D.E., et al., Effects of oxygen on mouse embryonic stem cell growth, phenotype retention, and cellular energetics. Biotechnol Bioeng, 2008. 101(2): p. 241-54.
    54. Shiku, H., et al., Oxygen permeability of surface-modified poly(dimethylsiloxane) characterized by scanning electrochemical microscopy. Chemistry Letters, 2006. 35(2): p. 234-235.
    55. Robertson, E., et al., Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. 1986.
    56. Gossler, A., et al., Transgenesis by means of blastocyst-derived embryonic stem cell lines. Proceedings of the National Academy of Sciences, 1986. 83(23): p. 9065.
    57. Hooper, M., et al., HPRT-deficient (Lesch–Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature, 1987. 326(6110): p. 292-295.
    58. McMahon, A.P. and A. Bradley, The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell, 1990. 62(6): p. 1073-1085.
    59. Pease, S., et al., Isolation of embryonic stem (ES) cells in media supplemented with recombinant leukemia inhibitory factor (LIF). Dev Biol, 1990. 141(2): p. 344.
    60. Nichols, J., E. Evans, and A. Smith, Establishment of germ-line-competent embryonic stem (ES) cells using differentiation inhibiting activity. Development, 1990. 110(4): p. 1341-1348.
    61. Minsky, M., US Patent# 3013467. Microscopy apparatus, 1957.
    62. Hollows, G., Confocal microscope lenses sharpen your sights. Laser focus world, 2004. 40(8): p. 120-124.
    63. Miyajima, A., et al., Role of Oncostatin M in hematopoiesis and liver development. Cytokine & Growth Factor Reviews, 2000. 11(3): p. 177-183.
    64. Untergasser, G., et al., CD34< sup>+</sup>/CD133< sup>−</sup> circulating endothelial precursor cells (CEP): Characterization, senescence and in vivo application. Experimental gerontology, 2006. 41(6): p. 600-608.
    65. Fürstenberger, G., et al., Circulating endothelial cells and angiogenic serum factors during neoadjuvant chemotherapy of primary breast cancer. Br J Cancer, 2006. 94(4): p. 524-531.
    66. Camesasca, M., I. Manas-Zloczower, and M. Kaufman, Entropic characterization of mixing in microchannels. Journal of Micromechanics and Microengineering, 2005. 15: p. 2038.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE