研究生: |
林佳良 Lin, Chia Liang |
---|---|
論文名稱: |
人類多核苷酸磷酸酶降解核醣核酸的結構研究 Structural insights into RNA degradation by human polynucleotide phosphorylase |
指導教授: |
袁小琀
Yuan, Hanna S. 呂平江 |
口試委員: |
袁小琀
呂平江 林淑端 孫玉珠 殷献生 詹迺立 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 77 |
中文關鍵詞: | 多核苷酸磷酸酶 |
外文關鍵詞: | polynucleotide phosphorylase |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多核苷酸磷酸酶 (polynucleotide phosphorylase, PNPase) 是一種在演化上具有高度保留性的酵素,存在於各種生物體內,包含細菌、植物到哺乳動物,主要參與在核醣核酸的代謝與降解。人類多核苷酸磷酸酶 (hPNPase) 不只負責降解特定的訊息核醣核酸 (mRNA) 和微核醣核酸 (miRNA),也負責輸送核醣核酸進入粒線體內,因此它調控廣泛的生理功能,包含細胞衰老 (cellular senescence) 以及細胞內的動態平衡 (homeostasis)。人類多核苷酸磷酸酶可以和hSUV3解旋酶 (helicase) 形成複合體,hSUV3解旋酶能夠幫助人類多核苷酸磷酸酶降解含有二級結構的核醣核酸。然而人類多核苷酸磷酸酶如何利用它的各種功能區和核醣核酸進行結合與降解,以及hSUV3解旋酶如何和人類多核苷酸磷酸酶進行結合,並且幫助其降解核醣核酸的詳細機制依然不清楚。
在本論文中我們解析出切除S1功能區之人類多核苷酸磷酸酶和hSUV3解旋酶的晶體結構,其解析度分別為為2.1 Å及3.3 Å。人類多核苷酸磷酸酶擁有一個 α-helical、一個KH、一個S1以及兩個RNase PH功能區 (domain),根據先前的研究,KH和S1功能區是參與核醣核酸的結合,而RNase PH功能區則是活性中心負責核醣核酸的降解。我們測定的晶體結構顯示三聚體的人類多核苷酸磷酸酶具有一個由六個RNase PH功能區所形成的類六環結構,其頂端則被三個KH功能區所形成的KH孔洞所覆蓋。我們的生化以及點突變實驗證明對於人類多核苷酸磷酸酶而言,S1功能區並不是和核醣核酸結合的關鍵區域,反而KH功能區上的保留性GXXG模體 (motif) 是直接參與核醣核酸的結合。我們的結構研究提供對於人類多核苷酸磷酸酶功能的新見解,其利用KH功能區所形成的KH孔洞來抓住具有較長3'端的核醣核酸,再將它傳送通過由RNase PH功能區形成的通道,最後進行降解的步驟。另一方面,具有較短3'端且有二級結構的核醣核酸則可以被人類多核苷酸磷酸酶輸送而不會被降解。
我們也發現人類多核苷酸磷酸酶能夠和hSUV3解旋酶形成3:3或3:2的複合體。hSUV3解旋酶的晶體結構顯示出其具有四個功能區,分別是N端功能區、兩個RecA-like功能區以及C端功能區。再者C端功能區不只參與核酸的結合,也參與了人類多核苷酸磷酸酶的結合。因此hSUV3解旋酶的晶體結構提供了我們研究其和人類多核苷酸磷酸酶之作用的起點。總和來說,此研究增進了我們對人類多核苷酸磷酸酶在降解和輸送核醣核酸的分子結構和機制上的瞭解。
PNPase (polynucleotide phosphorylase) is an evolutionarily conserved enzyme that participates in RNA processing and degradation in almost all species from bacteria to plants and higher mammals. Human PNPase (hPNPase) not only degrades specific mRNA and miRNA, but also imports RNA into mitochondria, and thus it regulates diverse physiological processes, including cellular senescence and homeostasis. It has been shown that hPNPase forms a complex with the helicase hSUV3 which promotes the activity of hPNPase in the digestion of structural RNA. However, how hPNPase binds and cleaves RNA using its various domains, as well as how hSUV3 interacts and works with hPNPase in RNA degradation are mostly unknown.
Here we determined the crystal structures of an S1 domain-truncated hPNPase and hSUV3 at a resolution of 2.1 Å and 3.3 Å, respectively. hPNPase contains one α-helical, one KH, one S1, and two RNase PH domains. Based on previous studies, the KH and S1 domain are involved in RNA binding and RNase PH domain is the active center for RNA degradation. We showed here that the trimeric hPNPase has a hexameric ring-like structure formed by six RNase PH domains, capped with a trimeric KH pore. Our biochemical and mutagenesis studies suggest that the S1 domain is not critical for RNA binding, and conversely, that the conserved GXXG motif in the KH domain directly participates in RNA binding in hPNPase. Our studies thus provide structural and functional insights into hPNPase, which uses a KH pore to trap a long RNA 3' tail that is further delivered into an RNase PH channel for the degradation process. Structural RNA with short 3' tails are, on the other hand, transported but not digested by hPNPase.
Moreover, we found that hPNPase forms a 3:3 and 3:2 complex with hSUV3. The crystal structure of hSUV3 reveals a four domain structure, the N-terminal domain, two RecA-like domains, and the C-terminal domain which is not only involved in nucleic acids binding, but also in interacting with hPNPase. The crystal structure of hSUV3 thus offers a starting point for the future study of its interactions with hPNPase. In summary, our studies provide structural insights for the role of hPNPase in RNA degradation and transportation.
Allmang, C., Kufel, J., Chanfreau, G., Mitchell, P., Petfalski, E., and Tollervey, D. (1999). Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J 18, 5399-5410.
Allmang, C., Mitchell, P., Petfalski, E., and Tollervey, D. (2000). Degradation of ribosomal RNA precursors by the exosome. Nucleic Acids Res 28, 1684-1691.
Anderson, J.S., and Parker, R.P. (1998). The 3' to 5' degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3' to 5' exonucleases of the exosome complex. EMBO J 17, 1497-1506.
Andrade, J.M., Pobre, V., Silva, I.J., Domingues, S., and Arraiano, C.M. (2009). The role of 3'-5' exoribonucleases in RNA degradation. Prog Mol Biol Transl Sci 85, 187-229.
Araki, Y., Takahashi, S., Kobayashi, T., Kajiho, H., Hoshino, S., and Katada, T. (2001). Ski7p G protein interacts with the exosome and the Ski complex for 3'-to-5' mRNA decay in yeast. EMBO J 20, 4684-4693.
Arigo, J.T., Eyler, D.E., Carroll, K.L., and Corden, J.L. (2006). Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol Cell 23, 841-851.
Baginsky, S., Shteiman-Kotler, A., Liveanu, V., Yehudai-Resheff, S., Bellaoui, M., Settlage, R.E., Shabanowitz, J., Hunt, D.F., Schuster, G., and Gruissem, W. (2001). Chloroplast PNPase exists as a homo-multimer enzyme complex that is distinct from the Escherichia coli degradosome. RNA 7, 1464-1475.
Bermudez-Cruz, R.M., Ramirez, F., Kameyama-Kawabe, L., and Montanez, C. (2005). Conserved domains in polynucleotide phosphorylase among eubacteria. Biochimie 87, 737-745.
Beuth, B., Pennell, S., Arnvig, K.B., Martin, S.R., and Taylor, I.A. (2005). Structure of a Mycobacterium tuberculosis NusA-RNA complex. EMBO J 24, 3576-3587.
Bousquet-Antonelli, C., Presutti, C., and Tollervey, D. (2000). Identification of a regulated pathway for nuclear pre-mRNA turnover. Cell 102, 765-775.
Brouwer, R., Pruijn, G.J., and van Venrooij, W.J. (2001). The human exosome: an autoantigenic complex of exoribonucleases in myositis and scleroderma. Arthritis Res 3, 102-106.
Burkard, K.T., and Butler, J.S. (2000). A nuclear 3'-5' exonuclease involved in mRNA degradation interacts with Poly(A) polymerase and the hnRNA protein Npl3p. Mol Cell Biol 20, 604-616.
Buttner, K., Wenig, K., and Hopfner, K.-P. (2005). Structural framework for the mechanism of archaeal exosomes in RNA processing. Mol Cell 20, 461-471.
Bycroft, M., Hubbard, T.J.P., Proctor, M., Freund, S.M.V., and Murzin, A.G. (1997). The solution structure of the S1 RNA binding domain: A member of an ancient nucleic acid-binding fold. Cell 88, 235-242.
Carpousis, A.J. (2007). The RNA degradosome of Escherichia coli: An mRNA-degrading machine assembled on RNase E. Annu Rev Microbiol 61, 71-87.
Carpousis, A.J., Luisi, B.F., and McDowall, K.J. (2009). Endonucleolytic initiation of mRNA decay in Escherichia coli. Prog Mol Biol Transl Sci 85, 91-135.
Chen, C.Y., Gherzi, R., Ong, S.E., Chan, E.L., Raijmakers, R., Pruijn, G.J., Stoecklin, G., Moroni, C., Mann, M., and Karin, M. (2001). AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107, 451-464.
Chen, H.-W., Koehler, C.M., and Teitell, M.A. (2007). Human polynucleotide phosphorylase: location matters. Trends Cell Biol 17, 600-608.
Chen, H.-W., Rainey, R.N., Balatoni, C.E., Dawson, D.W., Troke, J.J., Wasiak, S., Hong, J.S., McBride, H.M., Koehler, C.M., Teitell, M.A., et al. (2006). Mammalian polynucleotide phosphorylase is an intermembrane space RNase that maintains mitrochondrial homeostasis. Mol Cell Biol 26, 8475-8487.
Condon, C. (2007). Maturation and degradation of RNA in bacteria. Current opinion in microbiology 10, 271-278.
Das, S.K., Sokhi, U.K., Bhutia, S.K., Azab, B., Su, Z.Z., Sarkar, D., and Fisher, P.B. (2010). Human polynucleotide phosphorylase selectively and preferentially degrades microRNA-221 in human melanoma cells. Proc Natl Acad Sci USA 107, 11948-11953.
de la Cruz, J., Kressler, D., Tollervey, D., and Linder, P. (1998). Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3' end formation of 5.8S rRNA in Saccharomyces cerevisiae. EMBO J 17, 1128-1140.
Deana, A., Celesnik, H., and Belasco, J.G. (2008). The bacterial enzyme RppH triggers messenger RNA degradation by 5' pyrophosphate removal. Nature 451, 355-358.
Deutscher, M.P. (2006). Degradation of RNA in bacteria: comparison of mRNA and stable RNA. Nucleic Acids Res 34, 659-666.
Deutscher, M.P., and Li, Z. (2001). Exoribonucleases and their multiple roles in RNA metabolism. Progress in nucleic acid research and molecular biology 66, 67-105.
Doma, M.K., and Parker, R. (2006). Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440, 561-564.
Draper, D.E., and Reynaldo, L.P. (1999). RNA binding strategies of ribosomal proteins. Nucleic acids research 27, 381-388.
Dziembowski, A., Lorentzen, E., Conti, E., and Seraphin, B. (2007). A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 14, 15-22.
Dziembowski, A., Malewicz, M., Minczuk, M., Golik, P., Dmochowska, A., and Stepien, P.P. (1998). The yeast nuclear gene DSS1 which codes for a putative RNase II, is necessary for the function of the mitochondrial degradosome in processing and turnover of RNA. Mol Gen Genet 260, 108-114.
Dziembowski, A., Piwowarski, J., Hoser, R., Minczuk, M., Dmochowska, A., Siep, M., van der Spek, H., Grivell, L., and Stepien, P.P. (2003). The yeast mitochondrial degradosome - Its composition, interplay between RNA helicase and RNase activities and the role in mitochondrial RNA metabolism. J Biol Chem 278, 1603-1611.
Dziembowski, A., and Stepien, P.P. (2001). Genetic and biochemical approaches for analysis of mitochondrial degradosome from Saccharomyces cerevisiae. Ribonucleases, Pt B 342, 367-378.
Frazao, C., Mcvey, C.E., Amblar, M., Barbas, A., Vonrhein, C., Arraiano, C.M., and Carrondo, M.A. (2006). Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex. Nature 443, 110-114.
Gherzi, R., Lee, K.Y., Briata, P., Wegmuller, D., Moroni, C., Karin, M., and Chen, C.Y. (2004). A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol Cell 14, 571-583.
Gopal, B., Haire, L.F., Gamblin, S.J., Dodson, E.J., Lane, A.N., Papavinasasundaram, K.G., Colston, M.J., and Dodson, G. (2001). Crystal structure of the transcription elongation/antitermination factor NusA from Mycobacterium tuberculosis at 1.7 angstrom resolution. J Mol Biol 314, 1087-1095.
Grunberg-Manago, M., Oritz, P.J., and Ochoa, S. (1955). Enzymatic synthesis of nucleic acidlike polynucleotides. Science (New York, NY 122, 907-910.
Guo, X., Ma, J., Sun, J., and Gao, G. (2007). The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proceedings of the National Academy of Sciences 104, 151-156.
Houseley, J., LaCava, J., and Tollervey, D. (2006). RNA-quality control by the exosome. Nat Rev Mol Cell Biol 7, 529-539.
Houseley, J., and Tollervey, D. (2006). Yeast Trf5p is a nuclear poly(A) polymerase. EMBO Rep 7, 205-211.
Ishii, R., Nureki, O., and Yokoyama, S. (2003). Crystal structure of the tRNA processing enzyme RNase PH from Aquifex aeolicus. J Biol Chem 278, 32397-32404.
Januszyk, K., and Lima, C.D. (2010). Structural components and architectures of RNA exosomes. Adv Exp Med Biol 702, 9-28.
Jarrige, A.C., Brechemier-Baey, D., Mathy, N., Duche, O., and Portier, C. (2002). Mutational analysis of polynucleotide phosphorylase from Escherichia coli. J Mol Biol 321, 397-409.
Jedrzejczak, R., Wang, J.W., Dauter, M., Szczesny, R.J., Stepien, P.P., and Dauter, Z. (2011). Human Suv3 protein reveals unique features among SF2 helicases. Acta Crystallogr D 67, 988-996.
Jiang, T., and Altman, S. (2002). A protein subunit of human RNase P, Rpp14, and its interacting partner, OIP2, have 3'-->5' exoribonuclease activity. Proceedings of the National Academy of Sciences of the United States of America 99, 5295-5300.
Kadaba, S., Krueger, A., Trice, T., Krecic, A.M., Hinnebusch, A.G., and Anderson, J. (2004). Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev 18, 1227-1240.
Khidr, L., Wu, G.K., Davila, A., Procaccio, V., Wallace, D., and Lee, W.H. (2008). Role of SUV3 helicase in maintaining mitochondrial Homeostasis in human cells. J Biol Chem 283, 27064-27073.
Kikovska, E., Svard, S.G., and Kirsebom, L.A. (2007). Eukaryotic RNase P RNA mediates cleavage in the absence of protein. Proc Natl Acad Sci USA 104, 2062-2067.
LaCava, J., Houseley, J., Saveanu, C., Petfalski, E., Thompson, E., Jacquier, A., and Tollervey, D. (2005). RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121, 713-724.
Lejeune, F., Li, X., and Maquat, L.E. (2003). Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol Cell 12, 675-687.
Leszczyniecka, M., Kang, D.C., Sarkar, D., Su, Z.Z., Holmes, M., Valerie, K., and Fisher, P.B. (2002). Identification and cloning of human polynucleotide phosphorylase, hPNPaseold-35, in the context of terminal differentiation and cellular senescence. Proc Natl Acad Sci USA 99, 16636-16641.
Lewis, H.A., Musunuru, K., Jensen, K.B., Edo, C., Chen, H., Darnell, R.B., and Burley, S.K. (2000). Sequence-specific RNA binding by a Nova KH domain: implications for paraneoplastic disease and the fragile X syndrome. Cell 100, 323-332.
Lin-Chao, S., Chiou, N.-T., and Schuster, G. (2007). The PNPase, exosome and RNA helicases as the building components of evolutionarily-conserved RNA degradation machines. J Biomed Sci 14, 523-532.
Lin, P.H., and Lin-Chao, S. (2005). RhlB helicase rather than enolase is the beta-subunit of the Escherichia coli polynucleotide phosphorylase (PNPase)-exoribonucleolytic complex. Proceedings of the National Academy of Sciences of the United States of America 102, 16590-16595.
Liou, G.G., Chang, H.Y., Lin, C.S., and Lin-Chao, S. (2002). DEAD box RhlB RNA helicase physically associates with exoribonuclease PNPase to degrade double-stranded RNA independent of the degradosome-assembling region of RNase E. The Journal of biological chemistry 277, 41157-41162.
Littauer, U.Z., and Grunberg-Manago, M. (1999). Polynucleotide Phosphorylase. In The Encyclopedia of Molecular Biology, John Willy and Sons Inc, New York, 1911-1918.
Littauer, U.Z., and Soreq, H. (1982). Polynucleotide Phosphorylase. In The Enzymes 15, 517-539.
Liu, Q., Greimann, J.C., and Lima, C.D. (2006). Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127, 1223-1237.
Liu, Z.H., Luyten, I., Bottomley, M.J., Messias, A.C., Houngninou-Molango, S., Sprangers, R., Zanier, K., Kramer, A., and Sattler, M. (2001). Structural basis for recognition of the intron branch site RNA by splicing factor 1. Science 294, 1098-1102.
Lorentzen, E., and Conti, E. (2005). Structural basis of 3' end RNA recognition and exoribonucleolytic cleavage by an exosome RNase PH domain. Mol Cell 20, 473-481.
Lorentzen, E., Dziembowski, A., Lindner, D., Seraphin, B., and Conti, E. (2007). RNA channelling by the archaeal exosome. EMBO Rep 8, 470-476.
Lorentzen, E., Walter, P., Fribourg, S., Evguenieva-Hackenberg, E., Klug, G., and Conti, E. (2005). The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nat Struct Mol Biol 12, 575-581.
Luehrsen, K.R., and Fox, G.E. (1981). Secondary structure of eukaryotic cytoplasmic 5S ribosomal RNA. Proc Natl Acad Sci USA 78, 2150-2154.
Lykke-Andersen, S., Brodersen, D.E., and Jensen, T.H. (2009). Origins and activities of the eukaryotic exosome. J Cell Sci 122, 1487-1494.
Malecki, M., Jedrzejczak, R., Stepien, P.P., and Golik, P. (2007). In vitro reconstitution and characterization of the yeast mitochondrial degradosome complex unravels tight functional interdependence. J Mol Biol 372, 23-36.
Marcaida, M.J., DePristo, M.A., Chandran, V., Carpousis, A.J., and Luisi, B.F. (2006). The RNA degradosome: life in the fast lane of adaptive molecular evolution. Trends Biochem Sci 31, 359-365.
Minczuk, M., Piwowarski, J., Papworth, M.A., Awiszus, K., Schalinski, S., Dziembowski, A., Dmochowska, A., Bartnik, E., Tokatlidis, K., Stepien, P.P., et al. (2002). Localisation of the human hSuv3p helicase in the mitochondrial matrix and its preferential unwinding of dsDNA. Nucleic Acids Res 30, 5074-5086.
Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M., and Tollervey, D. (1997). The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases. Cell 91, 457-466.
Mitchell, P., and Tollervey, D. (2003). An NMD pathway in yeast involving accelerated deadenylation and exosome-mediated 3'-->5' degradation. Mol Cell 11, 1405-1413.
Mohanty, B.K., and Kushner, S.R. (2000). Polynucleotide phosphorylase functions both as a 3'→5' exonuclease and a poly(A) polymerase in Escherichia coli. Proc Natl Acad Sci USA 97, 11966-11971.
Mukherjee, D., Gao, M., O'Connor, J.P., Raijmakers, R., Pruijn, G., Lutz, C.S., and Wilusz, J. (2002). The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J 21, 165-174.
Navarro, M.V.A.S., Oliveira, C.C., Zanchin, N.I.T., and Guimara, B.G. (2008). Insights into the mechanism of progressive RNA degradation by the archaeal exosome. J Biol Chem 283, 14120-14131.
Nurmohamed, S., Vaidialingam, B., Callaghan, A.J., and Luisi, B.F. (2009). Crystal structure of Escherichia coli polynucleotide phosphorylase core bound to RNase E, RNA and manganese: implications for catalytic mechanism and RNA degradosome assembly. J Mol Biol 389, 17-33.
Orban, T.I., and Izaurralde, E. (2005). Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA 11, 459-469.
Portnoy, V., Palnizky, G., Yehudai-Resheff, S., Glaser, F., and Schuster, G. (2008). Analysis of the human polynucleotide phosphorylase (PNPase) reveals differences in RNA binding and response to phosphate compared to its bacterial and chloroplast counterparts. Rna 14, 297-309.
Regan, L., Valverde, R., and Edwards, L. (2008). Structure and function of KH domains. FEBS J 275, 2712-2726.
Sarkar, D., Das, S.K., Bhutia, S.K., Sokhi, U.K., Dash, R., Azab, B., and Fisher, P.B. (2011). Human polynucleotide phosphorylase (hPNPaseold-35): an evolutionary conserved gene with an expanding repertoire of RNA degradation functions. Oncogene 30, 1733-1743.
Sarkar, D., and Fisher, P.B. (2006). Molecular mechanisms of aging-associated inflammation. cancer Letters 236, 13-23.
Sarkar, D., Leszczyniecka, M., Kang, D.C., Lebedeva, I.V., Valerie, K., Dhar, S., Pandita, T.K., and Fisher, P.B. (2003). Down-regulation of myc as a potential target for growth arrest induced by human polynucleotide phosphorylase (hPNPaseold-35) in human melanoma cells. J Biol Chem 278, 24542-24551.
Sarkar, D., Park, E.S., Barber, G.N., and Fisher, P.B. (2007). Activation of double-stranded RNA-dependent protein kinase, a new pathway by which human polynucleotide phosphorylase (hPNPaseold-35) induces apoptosis. Cancer Res 67, 7948-7953.
Sarkar, D., Park, E.S., Emdad, L., Randolph, A., Valerie, K., and Fisher, P.B. (2005). Defining the domains of human polynucleotide phosphorylase (hPNPaseOLD-35) mediating cellular senescence. Mol Cell Biol 25, 7333-7343.
Sarkar, D., Park, E.S., and Fisher, P.B. (2006). Defining the mechanism by which IFN-b dowregulates c-myc expression in human melanoma cells: pivotal role for human polynucleotide phosphorylase (hPNPaseold-35). Cell Death Differ 13, 1541-1553.
Schmitt, M.E., Bennett, J.L., Dairaghi, D.J., and Clayton, D.A. (1993). Secondary structure of RNase MRP as predicted by phylogenetic comparison. FASEB J 7, 208-213.
Schubert, M., Edge, R.E., Lario, P., Cook, M.A., Strynadka, N.C.J., Mackie, G.A., and McIntosh, L.P. (2004). Structural characterization of the RNase E S1 domain and identification of its oligonucleotide-binding and dimerization interfaces. J Mol Biol 341, 37-54.
Schuster, G., Lisitsky, I., and Klaff, P. (1999). Polyadenylation and degradation of mRNA in the chloroplast. Plant physiology 120, 937-944.
Schuster, G., and Stern, D. (2009). RNA polyadenylation and decay in mitochondria and chloroplasts. Prog Mol Biol Transl Sci 85, 393-422.
Shi, Z.H., Yang, W.Z., Sue, L.C., Chak, K.F., and Yuan, H.S. (2008). Crystal structure of Escherichia coli PNPase: central channel residues are involved in processive RNA degradation. Rna 14, 2361-2371.
Siomi, H., Matunis, M.J., Michael, W.M., and Dreyfuss, G. (1993). The pre-mRNA binding K protein contains a novel evolutionarily conserved motif. Nucleic Acids Res 21, 1193-1198.
Slomovic, S., Portnoy, V., Yehudai-Resheff, S., Bronshtein, E., and Schuster, G. (2008). Polynucleotide phosphorylase and the archaeal exosome as poly(A)-polymerases. Biochimica et biophysica acta 1779, 247-255.
Slomovic, S., and Schuster, G. (2008). Stable PNPase RNAi silencing: Its effect on the processing and adenylation of human mitochondrial RNA. RNA 14, 310-323.
Smart, O.S., Goodfellow, J.M., and Wallace, B.A. (1993). The pore dimensions of gramicidin A. Biophy J 65, 2455-2460.
Stickney, L.M., Hankins, J.S., Miao, S., and Mackie, G.A. (2005). Function of the conserved S1 and KH domains in polynucelotide phosphorylase. J Bacteriol 187, 7214-7221.
Symmons, M.F., Jones, G.H., and Luisi, B.F. (2000). A duplicated fold is the structural basis for polynucleotide phosphorylase catalytic activity, processivity, and regulation. Structure 8, 1215-1226.
Szczesny, R.J., Borowski, L.S., Brzezniak, L.K., Dmochowska, A., Gewartowski, K., Bartnik, E., and Stepien, P.P. (2010). Human mitochondrial RNA turnover caught in flagranti: involvement of hSuv3p helicase in RNA surveillance. Nucleic Acids Res 38, 279-298.
Takahashi, S., Araki, Y., Sakuno, T., and Katada, T. (2003). Interaction between Ski7p and Upf1p is required for nonsense-mediated 3'-to-5' mRNA decay in yeast. EMBO J 22, 3951-3959.
Thiebaut, M., Kisseleva-Romanova, E., Rougemaille, M., Boulay, J., and Libri, D. (2006). Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. Mol Cell 23, 853-864.
Torchet, C., Bousquet-Antonelli, C., Milligan, L., Thompson, E., Kufel, J., and Tollervey, D. (2002). Processing of 3'-extended read-through transcripts by the exosome can generate functional mRNAs. Mol Cell 9, 1285-1296.
Tran, H., Schilling, M., Wirbelauer, C., Hess, D., and Nagamine, Y. (2004). Facilitation of mRNA deadenylation and decay by the exosome-bound, DExH protein RHAU. Mol Cell 13, 101-111.
Tu, C., Zhou, X.M., Tropea, J.E., Austin, B.P., Waugh, D.S., Court, D.L., and Ji, X.H. (2009). Structure of ERA in complex with the 3' end of 16S rRNA: implications for ribosome biogenesis. Proc Natl Acad Sci USA 106, 14843-14848.
Valverde, R., Edwards, L., and Regan, L. (2008). Structure and function of KH domains. The FEBS journal 275, 2712-2726.
Valverde, R., Pozdnyakova, I., Kajander, T., Venkatrarnan, J., and Regan, L. (2007). Fragile X mental retardation syndrome: structure of the KH1-KH2 domains of fragile X mental retardation protein. Structure 15, 1090-1098.
van Hoof, A., Lennertz, P., and Parker, R. (2000). Yeast exosome mutants accumulate 3'-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol Cell Biol 20, 441-452.
Wang, D.D.-H., Shu, Z., Lieser, S.A., Chen, P.-L., and Lee, W.-H. (2009). Human mitochondrial SUV3 and polynucleotide phosphorylase form a 330-kDa heteropentamer to cooperatively degrade double-stranded RNA with a 3-to-5 directionality. J Biol Chem 284, 20812–20821.
Wang, G., Chen, H.W., Oktay, Y., Zhang, J., Allen, E.L., Smith, G.M., Fan, K.C., Hong, J.S., French, S.W., McCaffery, J.M., et al. (2010). PNPASE regulates RNA import into mitochondria. Cell 142, 456-467.
Wyers, F., Rougemaille, M., Badis, G., Rousselle, J.C., Dufour, M.E., Boulay, J., Regnault, B., Devaux, F., Namane, A., Seraphin, B., et al. (2005). Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121, 725-737.
Zanchin, N.I., and Goldfarb, D.S. (1999). The exosome subunit Rrp43p is required for the efficient maturation of 5.8S, 18S and 25S rRNA. Nucleic Acids Res 27, 1283-1288.