簡易檢索 / 詳目顯示

研究生: 林民和
Lin, Ming-Ho
論文名稱: 利用氮氫和水氣電漿處理改善原子層化學氣相沉積HfO2高介電閘極氧化薄膜之熱穩定性
Improvement of Thermal Stability via N2/H2 and D2O Radical-annealing Treatment in Atomic Layer Deposition of HfO2 Gate Oxide
指導教授: 吳泰伯
Wu, Tai-Bor
甘炯耀
Gan, Jon-Yiew
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 98
中文關鍵詞: 原子層化學氣相沉積電漿高介電材料
外文關鍵詞: ALD, plasma, high-k material
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以原子層化學氣相沉積法(Atomic layer chemical deposition,簡稱ALCVD)鍍製高介電薄膜,因ALCVD具有極佳的厚度控制能力、均勻覆蓋能力以及低鍍膜溫度等優點,為許多鍍製超薄膜方法中做最具吸引力的。在鍍製HfO2時採用TEMAH (Tetrakis (ethylmethylamido)Hafnium) 作為Hf的前驅物,並以D2O作為氧化劑 。
    本實驗另外一個重點為電漿處理,分為表面電漿處理和臨場電漿處理兩種。表面電漿處理主要是希望經由水氣或是N2+H2電漿,在表面長上OH-或是NH-基,改善介面薄膜的生長情況,幫助薄膜沉積。臨場電漿處理則是在高介電薄膜沉積中,以臨場電漿的方式,對薄膜進行處理,進而使薄膜更加緻密。使用上電極為E-Gun鍍製的Ti電極,下電極則是RF sputter鍍製的Pt電極。鍍製電極前會進行Rapid thermal annealing(RTA)退火處理和Forming gas annealing(FGA)。
    本實驗研究重點在於利用不同參數下的表面電漿處理和臨場電漿處理,對於介面層和高介電薄膜的影響,並探討不同參數下薄膜電性、熱處理溫度對電性的影響和熱穩定性等,同時也一併探討該製程之機制。


    目錄 摘要 I 圖目錄 VI 表目錄 XI 第一章 簡介 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目標 4 第二章 文獻回顧 6 2.1 High-k材料7 6 2.2 High-k薄膜製備方法 11 2.2.1 物理氣相蒸鍍法 11 2.2.2 化學氣相蒸鍍法 12 2.2.3 液相化學鍍製法 15 2.3 原子層化學氣相沉積法(ALCVD)16-19 16 2.4 ALCVD 技術優缺點18-20 20 2.5 介電分析15 21-24 22 2.5.1 介電常數 22 2.5.2 介電損失 25 2.5.3 介電強度 29 2.6 電漿系統26-28 31 2.6.1 電漿原理 31 2.6.2 ALD中的電漿系統27 33 第三章 實驗製程 35 3.1 表面處理 35 3.1.1 基板準備 35 3.1.2 表面電漿處理 35 3.1.3 High-k薄膜 37 3.1.4 Post deposition annealing處理 38 3.1.5 鍍製電極 38 3.1.6分析與量測 40 3.1.6.1 X-ray photoelectron spectroscopy(XPS) 40 3.1.6.2 High Resolution Transmission electron microscopy(TEM) 40 3.1.6.3 Grazing-incidence X-ray diffraction(GIXRD) 41 3.1.6.4 Theta/theta goniometer system(TTR) 41 3.1.6.5 電性量測 41 3.2 Interlayer D2O radical annealing 43 3.2.1 基板準備 43 3.2.2 表面電漿處理 43 3.2.3 High-k薄膜41 44 3.2.4 Post deposition annealing處理 45 3.2.5 鍍製電極 45 3.2.6分析與量測 45 第四章 結果與討論 46 4.1 N2+H2電漿表面處理36-39 46 4.1.1不同N2/H2比例的影響 46 4.1.1.1 XPS分析結果 47 4.1.1.2 電性分析結果 50 4.1.1.3 HRTEM分析結果 63 4.1.2不同表面處理時間的影響 64 4.1.3不同薄膜物理厚度的影響 65 4.1.4 探討退火處理溫度的影響 67 4.2 臨場 D2O 電漿處理 70 4.2.1 臨場不同cycle數間的處理 71 4.2.2 臨場電漿的影響 76 4.2.3 臨場水氣電漿處理中改善電性的機制 81 4.2.4臨場水氣電漿處理在厚膜中的影響 86 第五章 結論 90 Reference 92

    1. Chau R, Kavalieros J, Roberds B, Schenker R, Lionberger D, Barlage D, Doyle B, Arghavani R, Murthy A and Dewey G, “30nm Physical Gate Length CMOS Transistors with 1.0 ps n-MOS and 1.7 ps p-MOS Gate Delays”, INTERNATIONAL ELECTRON DEVICES MEETING, 2000 (Piscataway: IEEE) p45
    2. Moore G E 1965 Electronics 38 114-117
    3. N. Miyata, M. Ichikawa, T. Nabatame, T. Horikawa and A. Toriumi, “Void nucleation in thin HfO layer on Si”, J. Appl. Phys. Vol. 42 (2003) pp. L 138–L 140
    4. K. J. Hubbard, and D. G. Schlom, “Thermodynamic stability of binary oxides in contact With silicon”, J. Mater. Res. 11, 2757 (1996)
    5. Riikka L. Puurunen and W. Vandervorst,” Island growth as a growth mode in atomic layer deposition: A phenomenological model”, J. Appl. Phys. 96, 7686 (2004)
    6. M.-Y. Ho, H. Gong, G. D. Wilk, B. W. Busch, M. L. Green, W. H. Lin, A. See, S. K. Lahiri and M. E. Loomans,” Suppressed crystallization of Hf-based gate dielectrics by controlled addition of Al2O3 using atomic layer deposition”, Appl. Phys. Lett., 81, 4218 (2002)
    7. http://www.ntrc.itri.org.tw/dict/content.jsp?newsid=476
    8. R. Chou, Intel, ICSTCT 2004 presentation
    9. B. Cheng, M. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. C. Stork, Y. Zhiping, P. M. Zeitzoff, and J. C. S. Woo, “The Impact of High-Gate Dielectrics and Metal Gate Electrodes on Sub-100 nm MOSFET’s”, IEEE Trans. Electron Devices, 46, no. 7, pp. 1537–1544, Jul. 1999.
    10. J. Robertson, P.W. Peacock, in: M. Houssa (Ed.), High-κ Gate Dielectrics, IOP, London, 2003, p. 372.
    11. 邱彥凱,”原子層化學氣相沉積之高介電薄膜於金屬-氧化物-金屬與金屬-絕緣層-金屬結構下之應用”,清華大學博士論文(2007)
    12. 簡銘萱,”探討利用原子層化學氣相沉積法鍍製Al2O3、HfO2之高介電結構薄膜,應用在奈米尺度世代DRAM影響之電性研究”,清華大學碩士論文(2007)
    13. 李清楠, “下電極材料對原子層化學氣相沉積Al2O3高介電薄膜櫻用在奈米尺度世代DRAM影響之研究”, 清華大學碩士論文(2005)
    14. Yuniarto Widjaja, Charles B. Musgrave, “Quantum chemical study of the mechanism of aluminum oxide atomic layer deposition”, Appl. Phys. Lett. 80, 3304 (2002)
    15. 李雅明,”固態電子學”,全華科技圖書 (1995)
    16. M. Ritala, H. Saloniemi, M. Leskela, T. Prohaska, G. Friedbacher, and M. Grasserbauer, “Introducing atomic layer epitaxy for the deposition of optical thin films ”, Thin Solid Film 286, 54 (1996)
    17. R. Matero, A. Rahtu, M. Ritala, M. Leskela, and T. Sajavaara, “Effect of water dose on the atomic layer deposition rate of oxide thin films ”, Thin Solid Films 368, 1 (2000)
    18. Suvi Haukka, Eeva-Liisa, and Toumo untola, “Analysis of hydroxyl group controlled atomic layer deposition of hafnium precursors dioxide from hafnium tetrachloride and water”, J. Appl. Phys. 95, 4777 (2004)
    19. H. S. Nalwa, “Handbook of thin film materials: Vol. 1 Deposition and processing of thin films ”, published by Academic Press, P. 103~P.159
    20. Michel Houssa,”High-k Gate Dieletrics”,published by Institude of Physics Publishing (2004)
    21. J. Moulson and J. M. Herbet, “Electronceramics-materials, Properties, Applications” published by Capman and Hall (1990)
    22. L. L. Hencb and J. K. West, “Principles of Electronic Ceramic”, published by John Wiley and Sons, Inc. (1990)
    23. M. W. Barsoum, “Fundamentals of Ceramics” published by McGraw-Hill, Inc. (1997)
    24. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to ceramics” , published by Johm Wiley Sons. (1991)
    25. Sang Bom Kang, Yun Sook Chae, Mee Young Yoon, Hyeun Seog Leem, Chang Soo Park, Sang In Lee, and Moon Yong Lee, “Low temperature processing of conformal TiN by ACVD (Advanced chemical vapor deposition) for Multilevel Metallization in high density ULSI devices”, IEEE, IITC 102-104 (1998)
    26. http://proj.moeaidb.gov.tw/eta/Handout/2004071310.pdf
    27. J. L. van Hemmen, S. B. S. Heil, J. H. Klootwijk, F. Roozeboom, C. J. Hodson, M. C. M. van de Sanden, and W. M. M. Kesselsa, “Plasma and Thermal ALD of Al2O3 in a Commercial 200 mm ALD Reactor”, Journal of The Electrochemical Society Vol 154 , 7, G165-G169 (2007)
    28. http://che.cycu.edu.tw/outstanding/material_lab/material/mechanism.pdf
    29. Nicollian, E. H., and J. R. Brews.,“MOS Physics and Technology” ,New York, Wiley, 1982.
    30. 蔡伩哲, “以高介電值材料作為矽基板上閘極介電層之研製與特性分析”,中原大學碩士論文(2002)
    31. Jihoon Choi, Seokhoon Kim, Jinwoo Kim, Hyunseok Kang, Hyeongtag Jeon, Choelhwyi Bae, “Effects of N2 remote plasma nitridation on the structural and electrical characteristics of the HfO2 gate dielectrics grown using remote plasma atomic layer deposition methods”, J. Vac. Sci. Technol. A 24„4, 2006
    32. Hyungchul Kim, Seokhoon Kim, Sanghyun Woo, Hye Yeong Chung, Honggyu Kim, Jongsan Park, and Hyeongtag Jeona, “Characteristics of Thin Hf-Silicate Gate Dielectrics after Remote N2 and N2O Plasma Post-Treatments”, Journal of The Electrochemical Society, 155 ,12, G299-G303 (2008)
    33. J. Morais, L. Miotti, G. V. Soares, S. R. Teixeira, R. Pezzi, K. P. Bastos, and I. J. R. Baumvol, A. L. P. Rotondaro, J. J. Chambers, M. R. Visokay, and L. Colombo, “Integrity of hafnium silicate/silicon dioxide ultrathin films on Si”, Appl. Phys. Lett., Vol. 81, No. 16, 14 October 2002
    34. Jiurong Liu, Ryan M. Martin, and Jane P. Chang, “Characteristics of Hf-silicate thin films synthesized by plasma enhanced atomic layer deposition”, J. Vac. Sci. Technol. A 26„5, ( 2008)
    35. Kwun-Bum Chung, W. J. Lee, C. Y. Kim, Mann-Ho Cho, and Dae Won Moon , “Nucleation Behavior of Atomic Layer Deposited SiO2 for Hf-Silicate Films”, Journal of The Electrochemical Society, 156 , 5 , G43-G47 (2009)
    36. G. Pant, A. Gnade, M. J. Kim, R. M. Wallace, B. E. Gnade, M. A. Quevedo-Lopez, P. D. Kirsch, and S. Krishnan,” Effect of thickness on the crystallization of ultrathin HfSiON gate dielectrics”, Appl. Phys. Lett., 89, 032904 (2006)
    37. M.-H. Cho, K. B. Chung, C. N. Whang, D. W. Lee, and D.-H. Ko, “Phase separation and electronic structure of Hf-silicate film as a function of composition”, Appl. Phys. Lett., 87, 242906 (2005)
    38. C. S. Kang, H.-J. Cho, K. Onishi, R. Nieh, R. Choi, S. Gopalan, S. Krishnan, J. H. Han, and J. C. Lee,” Bonding states and electrical properties of ultrathin HfON gate dielectrics”, Appl. Phys. Lett., 81, 2593 (2002)
    39. T. J. Park, J. H. Kim, M. H. Seo, J. H. Jang, and C. S. Hwang, “Improvement of thermal stability and composition changes of atomic layer deposited HfO2 on Si by in situ O3 pretreatment”, Appl. Phys. Lett., 90, 152906 (2007)
    40. 張哲豪, “金屬-絕緣體-半導體與金屬-絕緣體-金屬結構之高介電薄膜電子層化學氣相沉積”, 清華大學博士論文 (2007)
    41. H.-H. Tseng, M. E. Ramon, L. Hebert, P. J. Tobin, D. Triyoso, J. M. Grant, Z. X. Jiang, D. Roan, S. B. Samavedam, D. C. Gilmer, S. Kalpat, C. Hobbs,W. J. Taylor, O. Adetutu, and B. E. White, “ALD HfO2 using heavy water (D2O) for improved MOSFET stability”, in IEDM Tech. Dig., 2003, pp. 83–86.
    42. Taeho LEE, Han-Kyoung KO, Jinho AHN_, In-Sung PARK, Hyunjun SIM, Hokyung PARK and Hyunsang HWANG, “Electrical Properties of Atomic Layer Deposited HfO2 Gate Dielectric Film Using D2O as Oxidant for Improved Reliability”, Jpn. J. Appl. Phys., Vol. 45, No. 9A (2006)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE