簡易檢索 / 詳目顯示

研究生: 曾聖修
Sheng-Hsiu Tseng
論文名稱: 酚醛樹脂/六羰鉬製作碳/碳奈米複合材料對燃料電池雙極板之機械及電性質研究
Mechanical and Electrical Properties of Bipolar Plate of Fuel Cell Mixed with Utillize Phenolic Resin/Molybdenum Hexacarbonyl To Prepare Carbon/Carbon Nanocomposites
指導教授: 葉銘泉
Ming-Chuen Yip
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 81
中文關鍵詞: 雙極板
外文關鍵詞: bipolar plate
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨以固定酚醛樹脂、石墨及碳纖維之含量,添加不同比例六羰鉬後,再經過碳化製程,最後探討其機械、熱與電性質。結果顯示,在經過碳化製程後,抗折強度與衝擊強度呈現下降,空孔率呈現提升,導電性質有明顯大幅的提升,熱重損失大幅減少,導熱性質提升,氣體測漏皆為不漏氣,密度有些微下降,所有材料皆為難燃性質,熱膨脹係數明顯下降,最後再由破壞斷面觀察知,材料的破壞有碳纖維被拉出,且因部份碳纖維與酚醛樹脂之鍵結力不足,因此造成機械強度的不足,而酚醛樹脂在經過碳化製程中,會產生劇烈的收縮,會有應力集中現象的產生,且碳化製程中會產生四十餘種以上之物質,在其物質逸出的同時,會產生孔隙,因此吻合空孔提升,密度下降之結果。


    目錄 目錄.............................................................................................................I 表目錄.....................................................................................................III 圖目錄......................................................................................................IV 第一章 緒論..............................................................................................1 1-1 前言.................................................................................................1 1-2 燃料電池基本原理.........................................................................2 1-3 燃料電池分類.................................................................................4 第二章 研究目的與內容..........................................................................8 2-1 研究目的.........................................................................................8 2-2 研究內容.........................................................................................9 第三章 文獻回顧....................................................................................10 3-1 雙極板材料與樹脂系統...............................................................10 3-1-1 石墨雙極板.........................................................................10 3-1-2 金屬雙極板.........................................................................10 3-1-3 複合材料雙極板.................................................................12 3-1-4 熱固性樹脂(thermosetting resin)........................................12 3-1-5 熱塑性樹脂(thermoplastic resin)........................................13 3-2 雙極板加工方式...........................................................................14 3-2-1 塊狀模造成型(bulk molding compound)...........................14 3-2-2 射出成型.............................................................................15 3-3 酚醛樹脂備製與性質...................................................................16 3-3-1 Resol Type 酚醛樹脂...........................................................17 3-3-2 Novolac Type 酚醛樹脂......................................................19 3-4 質子交換膜燃料電池用雙極板基本要求...................................22 3-5 碳化之製備與性質.......................................................................22 3-6 六羰鉬之製備與性質...................................................................25 第四章 實驗流程....................................................................................26 4-1 實驗材料.......................................................................................26 4-2 實驗設備及儀器...........................................................................27 4-3 實驗流程與試片製備...................................................................36 4-4 實驗方法.......................................................................................39 第五章 結果與討論................................................................................47 5-1 導電率測試...................................................................................47 5-2 空孔率測試...................................................................................48 5-3 密度測試.......................................................................................50 5-4 衝擊強度測試...............................................................................52 5-5 抗折強度測試...............................................................................53 5-6 熱膨脹性質...................................................................................55 5-7 熱傳導測試...................................................................................57 5-8 熱重分析.......................................................................................59 5-9 難燃測試.......................................................................................60 5-10 氣體滲透率測試.........................................................................61 5-11 型態學分析.................................................................................63 5-12 拉曼光譜分析.............................................................................72 第六章 結論............................................................................................73 參考文獻..................................................................................................75 表目錄 表1-1 燃料電池分類表............................................................................6 表4-1 配方表..........................................................................................37 表4-2 標準垂直燃燒法..........................................................................43 表4-3 厚度修正表[61]............................................................................45 表4-4 尺寸修正表[63]............................................................................45 表5-1 碳化前添加不同比例六羰鉬之導電率......................................47 表5-2 碳化後添加不同比例六羰鉬之導電率......................................48 表5-3 碳化前添加不同比例六羰鉬之空孔率......................................49 表5-4 碳化後添加不同比例六羰鉬之空孔率......................................49 表5-5 碳化前添加不同比例六羰鉬之密度..........................................51 表5-6 碳化後添加不同比例六羰鉬之密度..........................................51 表5-7 碳化前添加不同比例六羰鉬之衝擊強度..................................52 表5-8 碳化後添加不同比例六羰鉬之衝擊強度..................................53 表5-9 碳化前添加不同比例六羰鉬之抗折強度..................................54 表5-10 碳化後添加不同比例六羰鉬之抗折強度................................54 表5-11 碳化前添加不同比例六羰鉬之熱膨脹性質............................56 表5-12 碳化後添加不同比例六羰鉬之熱膨脹性質............................56 表5-13 碳化前添加不同比例六羰鉬之熱傳導性質............................58 表5-14 碳化後添加不同比例六羰鉬之熱傳導性質............................58 表5-15 碳化前添加不同比例六羰鉬之難燃性質................................61 表5-16 碳化後添加不同比例六羰鉬之難燃性質................................61 表5-17 碳化前添加不同比例六羰鉬之氣體滲透性質........................62 表5-18 碳化後添加不同比例六羰鉬之氣體滲透性質........................62 圖目錄 圖1-1 燃料電池原理[2]............................................................................3 圖1-2 PEMFC單電池結構[3]...................................................................7 圖1-3 質子交換膜燃料電池....................................................................7 圖3-1 ®Sigracet PPG8 射出成型法[33]................................................15 圖3-2 ®Sigracet BBP4射出成型法[33].................................................16 圖4-1 BMC捏合機..................................................................................27 圖4-2 熱重分析儀..................................................................................28 圖4-3 熱壓成型機..................................................................................29 圖4-4 切割機..........................................................................................29 圖4-5 擺錘式衝擊試驗機......................................................................30 圖4-6 氦氣測漏儀..................................................................................31 圖4-7 四點探針電阻儀..........................................................................31 圖4-8 場發射掃描式電子顯微鏡(FE-SEM).........................................32 圖4-9 碳化爐..........................................................................................32 圖4-10 水平/垂直燃料測試儀...............................................................33 圖4-11 極限氧氣指數測試儀................................................................33 圖4-12 電子分析天平............................................................................34 圖4-13 熱機械分析儀............................................................................35 圖4-14 拉曼光譜分析儀........................................................................35 圖4-15 實驗流程圖................................................................................37 圖4-16 碳化流程圖................................................................................38 圖4-17 經熱壓成型雙極板尺寸為20*20cm.........................................38 圖4-18 耐衝擊強度測試試片尺寸圖[60]..............................................39 圖4-19 衝擊試驗校正圖........................................................................40 圖4-20 彎曲強度測試試片尺寸圖[60]..................................................40 圖4-21 氦氣測漏示意圖........................................................................42 圖4-22 四點探針儀[61]..........................................................................46 圖4-23 四點探針之距離修正定義[61]..................................................46 圖4-24 使用四點探針法測量體積電阻時使用之校正因數圖 [62]....46 圖5-1 碳化前後添加不同比例六羰鉬之導電率比較圖......................48 圖5-2 碳化前後添加不同比例六羰鉬之空孔率比較圖......................50 圖5-3 碳化前後添加不同比例六羰鉬之密度比較圖..........................51 圖5-4 碳化前後添加不同比例六羰鉬之衝擊強度比較圖..................53 圖5-5 碳化前後添加不同比例六羰鉬之抗折強度比較圖..................55 圖5-6 碳化前後添加不同比例六羰鉬之熱膨脹性質比較圖..............57 圖5-7 碳化前後添加不同比例六羰鉬之熱傳導比較圖......................58 圖5-8 碳化前添加不同比例六羰鉬之熱重分析比較圖......................59 圖5-9 碳化後添加不同比例六羰鉬之熱重分析比較圖......................60 圖5-10 六羰鉬粒子SEM圖...................................................................64 圖5-11表面元素成份定性-定量分析圖................................................68 圖5-12 碳化前添加0phr六羰鉬之破壞斷面圖....................................65 圖5-13 碳化前添加0.1phr六羰鉬之破壞斷面圖.................................65 圖5-14 碳化前添加0.3phr六羰鉬之破壞斷面圖.................................66 圖5-15 碳化前添加0.5phr六羰鉬之破壞斷面圖.................................66 圖5-16 碳化前添加0.7phr六羰鉬之破壞斷面圖.................................67 圖5-17 碳化前添加0.85phr六羰鉬之破壞斷面圖...............................67 圖5-18 碳化前添加1phr六羰鉬之破壞斷面圖....................................68 圖5-19 碳化後添加0phr六羰鉬之破壞斷面圖....................................68 圖5-20 碳化後添加0.1phr六羰鉬之破壞斷面圖.................................69 圖5-21 碳化後添加0.3phr六羰鉬之破壞斷面圖.................................69 圖5-22 碳化後添加0.5phr六羰鉬之破壞斷面圖.................................70 圖5-23 碳化後添加0.7phr六羰鉬之破壞斷面圖.................................70 圖5-24 碳化後添加0.85phr六羰鉬之破壞斷面圖...............................71 圖5-25 碳化後添加1phr六羰鉬之破壞斷面圖....................................71 圖5-26 碳化前後之拉曼光譜圖............................................................72

    參考文獻
    1. A. J. Apply, “Iussue In Fuel Commerial,” Power Source, vol. 69, pp. 153-176 (1996)
    2. www.Plastics Technology.com
    3. J. P. Longwell, E. S. Rubin and J. Wilson, “Energy for the future,” Energy Combust. Sci., vol. 21, pp. 269-360 (1995)
    4. James Larminie, Andrew Discs, Fuel Cell Systems Explained, John Wiley, (2001)
    5. R. C. Makkus, Arno H. H Janssen, Frank A.de Bruijn and Ronald K.A.M.Mallant, “Stainless steel for cost-competitive bipolar plate in PEMFCs” Fuel Cells Bulletin Vulume:3, Issue:17, pp.5-9, February, (2000)
    6. R. C. Makkus, A. H. Janssen, F. A. Bruijin, K. Ronald and D. A. Mallant, “Stainless steel for cost-competitive bipolar plates in PEMFCs,” Fuel Cells Bulletin Vol. 3, Issue:17, pp. 5-9, (2000)
    7. D. P. Davies, P. L. Adcock, M. Turpin, and S. J. Rowen, “Bipolar plate materials for solid polymer fuel cells,” Journal of Applied Electrochemistry, Vol. 30, pp. 101-105, (2000)
    8. W. Mahlon, ”Composite bipolar plate for electrochemical cells,” WO00/ 25372, (2000)
    9. B. Mukesh, “Infection moldable conductive aromatic thermoplastic liquid crystalline polymer compositions,“ WO00/44005, (2000)
    10. R. Horung and G. Kappelt, ”Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells,” Journal of Power Source, Vol. 72, pp. 20-21, (1998)
    11. D. P. Davies, P. L. Adcock, M. Turpin and S. J. Rowe, ”Stainless steel as a bipolar plate material for solid polymer fuel cells,” Journal of Power Sources Vol. 86, Issue:1-2, pp. 237~242, (2000)
    12. R. C. Makkus , A. H. H. Janssen, , F. A. de Bruijn and R. K. A. M. Mallani, “Journal of Power Sources Vol.86, Issue:1-2 pp. 274-282, (2000)
    13. J. Wind, R. Spah, W. Kaiser, and G. Bohm, “Metaliic bipolar plates for PEM fuel cells,” Journal of Power Sources Vol. 105, Issue:2, pp. 154-158
    14. H. Wang, M. A. Sweikar and J. A. Turner, “Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 115, pp. 234-251, (2003)
    15. K. Ledjeff-Gey, T. Kalk, F. Mahlendorf, O. Niemzig, A.Trautmann and J.Roes, “Porable PEFC generator with propane as fuel,” Journal of Power Sources, Vol. 86, pp. 166-172, (2000)
    16. W. Mahlon,“Composite bipolar plate for electrochemical cells,” WO00/ 25372, (2000)
    17. http://www.h2economy.com
    18. R. Blunk, M. H. A. Elhamid, D. Lisi and Y. Mikhail, “Polymeric composite bipolar plates for vehicle applications” Journal of Power Sources, Vol. 156, pp. 1511–1571, (2006)
    19. R. C. Emanulson, “Separator Plate for electrochemical cells,” US4301222, (1981)
    20. www.Plastics Technology.com
    21. R. Blunk, M. H. A. Elhamid, D. Lisi and Y. Mikhail, “Polymeric composite bipolar plates for vehicle applications” Journal of Power Sources, Vol. 156, pp. 1511–1571, (2006)
    22. C. Y. Yen, Shu-Hang Liao, Yu-Feng Lin, Chih-Hung Hung, Yao-Yu Lin, Chen-Chi M. Ma “Preparation and properties of high performance nanocomposite bipolar plate for full cell,” Journal of Power Sources, Vol.162, pp. 309-315, (2006)
    23. M. K. Bisaria, “Injection moldable conductive aromatic thermoplastic liquid crystalline polymer compositions,” WO 00/ 44005, (2001)
    24. N. B. Edward and J. L. Richard, “Carbon fiber reinforced fluorocarbon-graphite bipolar current collector-separator,” US4339322, (1982)
    25. A. Heinzel, F. Mahlendorf, O. Niemzig and C. Kreuz, “Injection moulded low cost bipolar plates for PEM fuel cells,” Journal of Power Sources, Vol. 131, pp. 35–40, (2004)
    26. J. Huang, D. G. Baird and J. E. McGrath, “Development of fuel cell bipolar plates from graphite filled wet-lay thermoplastic composite materials,” Journal of Power Sources, Vol. 131, pp.35-40 (2004)
    27. H. Wolf and M. Willert-Porada, ”Electrically conductive LCP–carbon composite with low carbon content for bipolar plate application in polymer electrolyte membrane fuel cell,” Journal of Power Sources, Vol. 153, pp. 41-46, (2006)
    28. B. D. Cunningham, J. Huang and D. G. Baird “Development of bipolar plates for fuel cells from graphite filled wet-lay material and a thermoplastic laminate skin layer,” Journal of Power Sources, Vol. 165, pp. 764-773 (2007)
    29. H. C. Kuan , C. C. Ma, K. H. Chen and S. M. Chen, ” Preparation, electrical, mechanical and thermal properties of composite bipolar plate for a fuel cell,” Journal of Power Sources, Vol. 134, pp. 7–17, (2004)
    30. L. N. Song, M. Xiao , X. H. Li and Y. Z. Meng, “Short carbon fiber reinforced electrically conductive aromatic polydisulfide / expanded graphite nanocomposites ” Materials Chemistry and Physics Vol. 93 pp. 122–128, (2005)
    31. Q. Yin, A. J. Li, W. Q. Wang, L. G. Xia and Y. M. Wang, “Study on the electrical and mechanical properties of phenol formaldehyde resin/graphite composite for bipolar plate” Journal of Power Sources, Vol. 165, pp 717-721, (2007)
    32. A. Heinzel, F. Mahlendorf, O. Niemzig and C. Kreuz, “Injection moulded low cost bipolar plates for PEM fuel cells,” Journal of Power Sources, Vol. 131, pp. 35-40, (2004)
    33. A. Müller , P. Kauranen, A. von Ganski and B. Hell, “Injection moulding of graphite composite bipolar plates” Journal of Power Sources, Vol. 154, pp. 467–471, (2006)
    34. M. A. Kiselev and A. I. Kuzayev, ”Preparation and properties of silicone Modified Phenol-Formaldehyde Resin ” U.S. Patent 2685054 (1968)
    35. “酚醛樹脂”, 著:村山 新一, 編譯:洪純仁, 台南復文書局, (1984)
    36. E. Kumpinsky, “Process Design and Control : A Study on Resol Type phenol-Formaldehyde Runaway Reactions,” Ind Eng . Chem. Res, Vol. 33, pp.285-291, (1994)
    37. G. Odian, “Principle of Polymerixation”, 3rd Edition, Chapter2, pp123-132, (1994)
    38. K. Robberg, V. Trapp, W. Vielstich, H. A. Gasteiger, and A. Lamm (Eds.), “Handbook of Fuel Cells—Fundamentals, Technology and Applications, vol. 3: Fuel Cell Technology and Applications” Wiley & Sons, New York, pp. 286, (2003)
    39. J. G. Clulow, F. E. Zappitelli, C. M. Carlstrom, J. I. L. Zemsky, D. N. Busick and M. S. Wilson, “Fuel Cell Technology: Opportunities and Challenges, Topical Conference Proceedings” 2002 AIChE Spring National Meeting, New Orleans, LA, March 10–14,, pp. 417– 425, (2002)
    40. K. Robberg, V. Trapp, W. Vielstich, H. A. Gasteiger and A. Lamm (Eds.), “Handbook of Fuel Cells—Fundamentals, Technology and Applications, vol. 3: Fuel Cell Technology and Applications” Wiley & Sons, New York, pp. 308–314, (2003)
    41. E. A. Cho, U. S. Jeon, H. Y. Ha, S. A. Hong, I. H. Oh, “Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells” Journal of Power Sources, Vol. 125, pp. 178-182, (2004)
    42. W. C. Chang, N. H. Tai and C. C. M. Ma, “Dynamic Mechanical Properties of Carbon/carbon Composites”, J. Mater. Sci., Vol. 30, pp. 1225, (1995)
    43. C. C. M. Ma, N. H. Tai, W. C. Chang and Y. P. Tsai, “Morphologies, Microstructure and Mechanical Properties Change of 2D Carbon/carbon Composites During the CVI Densitification Process”, Carbon, Vol. 34, pp. 1175, (1996)
    44. J. R. Strife and J. E. Sheehan, Am. Ceram. Ceram. Soc. Bull., Vol. 67, pp. 369, (1988)
    45. G. L. Wilkes, B. Orler and H. H. Huang, “Ceramers-Hybird Materials Incorporating Polymeric Oligomeric Species into Inorganic Glasses Utilizing a Sol-gel Approach”, Macromol., Abstracts of Papers of the Am. Chem. Soc., Vol. 190, pp. 109, (1985)
    46. A. Kioul and L. Mascia, “Compatibility of Polyimide-silicate Ceramers Induced by Alkoxysilane Silane Coupling Agents”, J.Non-crystal. Solids, Vol. 175, pp. 169, (1994)
    47. L. Mascia, Z. Zhang and S. J. Shaw, “Carbon Fiber Composites Based on Polyimide/silica Ceramers: Aspects of Structure-properites Relationship”, Compo. Part A, Vol. 27, pp. 1211, (1996)
    48. E. M. Wekerka and R. J. Imprescia, “The use of Organometallic Additives to Promote Graphitization of Carbons Derived from Furfuryl Alcohol Resins”, Carbon, Vol. 11, pp. 289-297. (1973)
    49. A. Oya, Y. Ida, M. Takabatake S. Ofani and H. Marsh, "With Simon''s Reagent and HNO3/H2SO4 of Turbostratic Graphitic Carbon Prepared Catalytically by Nickel Particles (20nm) in a Carbonized Resin" Journal of Materials Science, Vol. 16, pp. 1809-1814, (1981)
    50. W. C. Chang, C. C. M. Ma and N. H. Tai, "Processing Methods and Parameters on the Mechanical Properties and Microstructure of Carbon/Carbon Composites" Journal of Material science, Vol. 29, pp. 5859-5867, (1994)
    51. M. Mueller; K. M. Beinborn and K. J. Huettinger, "Cance of the Fiber Coating in the Production of Carbon Fiber-Reinforced Carbons from HT Carbon Fiber and Phenolic Resin as Matrix Precursor II. Phenolic Resin Coatings" Carbon, Vol. 33, No. 8, pp. 1043-1046, (1995)
    52. W. C. Chang, N. H. Tai and C. C. M. Ma, "Mechanical Properties of Carbon-Carbon Composites" Journal of Materials Science, Vol. 30, pp. 1225-1232, (1995)
    53. C. C. M. Ma, S. C. Sung and W. J. Wu, "Utilization of the Derivatives of Fullerene (60) Modified Phenolic resin to prepare Carbon/Carbon composites(I)" ANTEC'' 99 Soc. of Plastics Engineers, New York, N. Y. U.S.A., (1999)
    54. L. Dobiasova, V. Stary, P. Glogar and V. Valvoda, "of Carobn fiber and Carbon composites by asymmetric X-ray diffraction technique" Carbon, Vol. 37, pp. 421-425, (1999)
    55. 吳文嘉, “熱塑性高分子改質Novolac type酚醛樹脂用於製作碳/碳複合材料”, 清華大學化工程研究所碩士論文, (1999)
    56. V. E. Yudin, M. Y. Goykhman, K. Balik, P. Glogar, G. N. Gubanova and V. V. Kudriavtsev “Carbonization behaviour of some polyimide resins reinforced with carbon fibers”, Carbon, Vol. 38, Issue 1, pp. 5-12, (2000)
    57. 林佳民, “以溶膠-凝膠法製作酚醛樹脂/二氧化矽之有機無機混成材料以及其在纖維強化複合材料上之製備與應用”, 國立清華大學化學工程研究所博士論文, (2000)
    58. T. H. Ho, W. S. Lu and Y. X. Chen, “The influence of post-cure on properties of carbon/phenolic resin cured composites and their final carbon/carbon composites”, polymer composite 21: (1)96-103 FEB (2000)
    59. A. I. DeRosa, D. B. Dove and R. E. Loehman, “Properties of Molybdenum Films Prepared by Decomposition of the Carbonyl”, J. Vac. Sci. Technol, Vol. 11, No. 1, (1974)
    60. 戴念華, “納米高溫複合材料之製程與分析”, 國防工業發展基金會委託學術機構研究計畫, (1998)
    61. 陳韋任, “燃料電池用導電雙極板之碳奈米管/酚醛樹脂奈米複合材料備製及其性質研究”, 中原大學機械工程研究所碩士論文, (2004)
    62. 陳彤逸, “奈米氧化金屬複合材料雙極板之機械性質與物理性質”, 清華大學動力機械工程研究所碩士論文, (2007)
    63. W. E. Beadle, J. C. C. Tsa, and R. D. Plummer, “Quick reference manual for silicon integrated circuit technology,” Bell Telephone Laboratories, (1985)
    64. B. Wetzel, P. Rosso, F. Haupert and K. Friedrich, “Epoxy nanocomposites-fracture and toughening mechanisms” Engineering Fracture Mechanics, Vol. 73, pp. 2375-2398, (2006)
    65. S. M. Sze, “Semiconductor devices physics and technoloty,” John Wiley & Sons, U. S. A. (1985)
    66. 陳樹忍, “酚醛樹脂碳化率提高之研究”, 中正理工學院應用化學研究所碩士論文, (1987)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE