簡易檢索 / 詳目顯示

研究生: 史安琪
Shi, An-Qi
論文名稱: 解析式構建展開布拉格峰方法的分析與參數選取的研究
Parametric studies on various methodologies for creating spread-out Bragg peaks in proton therapy
指導教授: 許榮鈞
Sheu, Rong-Jiun
口試委員: 蔡惠予
Tsai, Hui-Yu
許芳裕
Hsu, Fang-Yuh
林宗逸
Lin, Tzung-Yi
學位類別: 碩士
Master
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 45
中文關鍵詞: 質子治療展開的布拉格峰
外文關鍵詞: Proton therapy, Spread Out Bragg Peak
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在重新評估用於生成平坦的展寬的布拉格曲綫(SOBP)的權重函數,並探討不同方法對SOBP平坦度的影響。研究使用FLUKA模擬質子與水的相互作用,生成的布拉格質子曲綫。首先,回顧了幾篇關於SOBP權重函數的文獻,討論其實施方法。Bortfeld和Schlegel於1996年提出的權重函數是當前所有權重函數的基礎,但因忽略了通量減少和range straggling的影響,導致應用於模擬的數據時,生成的SOBP成傾斜的。接著我們實現了Jette和Chen在2011提出的方法,透過擬合關於射程特性參數p獲得平坦的SOBP。本研究對與FLUKA模擬的布拉格曲綫的最佳參數p值進行了探討。另一種方法由Wang等人在2019年提出,重新擬合函數以平坦化SOBP,本研究對此方法進行了實現和對其中的參數進行了研究。最後對蒙特卡羅计算與矩阵计算相結合的方法(MCMC)進行了實現和比較。總結來說,選擇適當的權重函數對於生成平坦的SOBP至關重要,不同的方法可能導致略有不同的結果,因此需要根據實際情況選擇最適合的方法。


    The aim of this study is to reevaluate the weight function used to generate a flat broadened Bragg curve (SOBP) and explore the influence of different methods on the flatness of SOBP. FLUKA was used to simulate the interaction between protons and water, and the Bragg proton curve was generated. Firstly, several literatures about SOBP weight function are reviewed and its implementation methods are discussed. The weight function proposed by Bortfeld and Schlegel in 1996 is the basis of the current ownership heavy function, but because it ignores the influence of flux reduction and range straggling, the generated SOBP is skewed when applied to the simulated data. We then implement the method proposed by Jette and Chen in 2011 to obtain a flat SOBP by fitting the parameter p about the range characteristics. In this paper, the optimum parameter P-value of Bragg curve simulated with FLUKA is discussed. Another method, proposed by Wang et al in 2019, is to refit the function to flatter SOBP. This method is implemented and its parameters are studied in this study. Finally, the method of combining Monte Carlo computation with matrix computation (MCMC) is realized and compared. In summary, choosing the appropriate weight function is crucial for generating a flat SOBP, and different methods can lead to slightly different results, so you need to choose the most suitable method according to the actual situation.

    摘要........i Abstract........ii 致謝........iii 表目錄........vi 圖目錄........vii 第一章 緒論........1 1.1展開的布拉格峰(SOBP)........1 1.2研究動機與目的........2 1.3SOBP構建方法........3 1.4HOM值........5 1.5質子布拉格曲綫的解析近似法........5 1.5.1 總吸收劑量........5 1.5.2 射程和能量的關係........6 1.5.3 通量減少........7 1.5.4 深度劑量無range straggling........7 第二章 研究材料與方法........9 2.1 模拟中使用的几何示意图........9 2.2 USRBIN........10 2.3 質子布拉格曲綫内插方式........10 2.4 四種構建展開布拉格峰的方法........12 2.4.1 權重函數解析式 (Bortfeld and Schlegel,1996)........12 2.4.2 權重因子函數........13 2.4.3 權重函數解析式 (Jette and Chen,2011)........15 2.4.4 初始深度選擇........15 2.4.5 權重函數解析式 (Wang et al.,2019)........16 2.4.6 MCMC方法 (Branco et al.,2023)........17 2.5 質子射程 (R) 的定義........19 第三章 結果........20 3.1方法1 (Bortfeld and Schlegel,1996)的實現與驗證........20 3.1.1 Range Straggling (射程歧離)........20 3.1.2 質子布拉格曲綫解析近似法數據中的實現與驗證........21 3.1.3 實際模擬與質子布拉格曲綫解析近似法的比較........22 3.2方法2 (Jette and Chen,2011)的實現與最佳p值........22 3.2.1 使用不同程式所得的最佳p值........23 3.2.2 使用不同程式根據射程與能量的關係擬合得到的α和p值........24 3.2.3 對於FLUKA模擬的布拉格質子曲綫最佳p值的選擇........26 3.2.4 參數HOM+值的定義........30 3.2.5 降低最末端權重的最佳值比例........30 3.3方法3:Wang et al. (2019)的實現與參數研究........31 3.3.1 根據射程和能量的關係重新擬合α和p值........31 3.3.2 能量間隔的選擇........32 3.3.3 綫性方程的擬合........35 3.3.4展開布拉格峰的實現........36 3.4方法4:MCMC方法 (Branco et al.,2023)........38 3.4.1輸入不同組數........39 第四章 結論........41 第五章 未來方向........42 參考文獻........43

    [1] Andreo, P., Burns, D. T., & Hohlfeld, K. (2000). "Absorbed Dose
    Determination in External Beam Radiotherapy: An International Code of
    Practice for Dosimetry Based on Standards of Absorbed Dose to Water (IAEA
    TRS-398)." USA.
    [2] Jette, D., & Chen, W. (2011). "Creating a spread-out Bragg peak in proton
    beams." Physics in Medicine and Biology, 56, N131. doi:10.1088/0031-
    9155/56/10/N131.
    [3] Gardey, K.-U., Oelfke, U., & Lam, G. K. Y. (1999). "Range modulation in
    proton therapy - An optimization technique for clinical and experimental
    applications." Physics in Medicine and Biology, 44, N81–N88.
    doi:10.1088/0031-9155/44/4/N81.
    [4] Golub, G. H., & Reinsch, C. (1971). "Singular value decomposition and least
    squares solutions." In Linear Algebra (pp. 134–151). Springer.
    [5] Gradshteyn, I. S., & Ryzhik, I. M. (1980). "Table of Integrals, Series and
    Products." Academic Press. Corrected and enlarged edition.
    [6] Bethe, H. A., & Askhin, J. (1953). "Passage of radiations through matter." In
    E. Segre (Ed.), Experimental Nuclear Physics (Vol. 1). Wiley.
    [7] Safigholi, H., & Song, W. Y. (2018). "Calculation of water equivalent ratios
    for various materials at proton energies ranging 10–500 MeV using MCNP,
    FLUKA, and GEANT4 Monte Carlo codes." Physics in Medicine and
    Biology, 63. doi:10.1088/1361-6560/aa9f11.
    [8] Branco, I. S. L., Burin, A. L., Pereira, J. J. N., Siqueira, P. T. D., Shorto, J. M.
    B., & Yoriyaz, H. (2023). "Comparison of methodologies for creating spread￾out Bragg peaks in proton therapy using TOPAS and MCNP codes." Radiation
    Physics and Chemistry, 211. doi:10.1016/j.radphyschem.2023.109466.
    [9] Janni, J. F. (1982). "Proton range-energy tables, 1 keV–10 GeV." Atomic Data
    and Nuclear Data Tables, 27, 147–339. doi:10.1016/0092-640X(82)90004-X.
    [10] Rezaee, L. (2018). "Design of spread-out Bragg peaks in hadron therapy with
    oxygen ions." Reports of Practical Oncology and Radiotherapy, 23.
    doi:10.1016/j.rpor.2018.08.001.
    [11] Berger, M. J. (1993). "Penetration of proton beams through water I. Depth￾dose distribution, spectra and LET distribution." Report NISTIR 5226,
    National Institute of Standards and Technology, Physics Laboratory,
    Gaithersburg, MD.
    [12] Lee, M., Nahum, A. E., & Webb, S. (1993). "An empirical method to build
    up a model of proton dose distribution for a radiotherapy treatment planning
    package." Physics in Medicine and Biology, 38, 989–998. doi:10.1088/0031-
    9155/38/7/002.
    [13] Evans, R. D. (1982). "The Atomic Nucleus." Robert E. Krieger, Malabar, FL.
    [14] Hazem, R. (2023). "Interaction of Proton Beam with Human Tissues in
    Proton Therapy." In Proton Therapy - Technological Advances and Future
    Direction. doi:10.5772/intechopen.104905.
    [15] Jia, S. B., Romano, F., Cirrone, G. A. P., Cuttone, G., Hadizadeh, M. H.,
    Mowlavi, A. A., & Raffaele, L. (2015). "Designing a range modulator wheel
    to spread-out the Bragg peak for a passive proton therapy facility." Nuclear
    Instruments and Methods in Physics Research A.
    doi:10.1016/j.nima.2015.06.012.
    [16] Bortfeld, T., & Schlegel, W. (1996). "An analytical approximation of depth–
    dose distributions for therapeutic proton beams." Deutsches
    Krebsforschungszentrum, Abt. Medizinische Physik, Im Neuenheimer Feld
    280, 69120 Heidelberg, Germany.
    [17] Bortfeld, T. (1997). "An analytical approximation of the Bragg curve for
    therapeutic proton beams." Medical Physics, 24, 2021–2029.
    doi:10.1118/1.597899.
    [18] Wang, J., Cruz, L. A., Liu, Z., Lei, H., Wei, Y., Zhang, W., & Peng, S.
    (2019). "Weight adaptation-based spread-out Bragg peak method." Chinese
    Journal of Medical Physics, 36(1).
    [19] Yang, Z.-Y., Tsai, P.-E., Lee, S.-C., Liu, Y.-C., Chen, C.-C., Sato, T., &
    Sheu, R.-J. (2017). "Inter-comparison of dose distributions calculated by
    FLUKA, GEANT4, MCNP, and PHITS for proton therapy." EPJ Web of
    Conferences, 153. doi:10.1051/epjconf/201715302004.
    [20] Zhang, R., Taddei, P. J., Fitzek, M. M., & Newhauser, W. D. (2010). "Water
    equivalent thickness values of materials used in beams of protons, helium,
    carbon, and iron ions." Physics in Medicine and Biology, 55, 2481–2493.
    doi:10.1088/0031-9155/55/9/001.

    QR CODE