簡易檢索 / 詳目顯示

研究生: 李嘉倫
Li, Cha-Lun
論文名稱: 於空間資料庫考量雙資料型態的反向最近點Top-N查詢處理
Top-N Query Processing on Spatial Databases Considering Bi-chromatic Reverse k-Nearest Neighbors
指導教授: 陳良弼
Chen, Arbee L.P.
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 29
中文關鍵詞: 反向最近點查詢空間資料庫前N解查詢處理雙資料型態反向最近點查詢
外文關鍵詞: RkNN, Spatial database, Top-N, BRkNN
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一個反向最近點(RkNN)查詢找出把查詢點當成前k個近的資料點。而雙資料型態反向最近點(BRkNN)查詢是RkNN的變形,考量兩種資料型態。給予兩個不同型態資料集G和C,G中的一個BRkNN查詢點會找出C中那些把查詢點在G中為前k個近的資料點。不同於傳統BRkNN,我們提出了一個基於BRkNN的Top-n查詢,會找出G中具有最多BRkNN結果的N個點。我們利用了Voronoi Diagram索引G資料集,並可輕易的計算出各個G中的點的最大限BRkNN結果。然後對於每個查詢我們套用並改良現存的方法去找出屬於此查詢點的搜尋區域,最後輔以三角不等式
    對落在區域中屬於C的資料點做精算而得到答案。我們和目前最佳的BRkNN方法比較,把它套用於我們的問題中,實驗顯示出不論是Top-N的查詢抑或是單一個BRkNN查詢我們效能都明顯的比較好。


    A reverse k-nearest neighbor (RkNN) query retrieves the data points regarding the query point as
    one of their corresponding k nearest neighbors. A bi-chromatic reverse k-nearest neighbor (BRkNN)
    query is a variant of the RkNN query, considering two types of data. Given two types of data G and
    C, a BRkNN query regarding a data point q in G retrieves the data points from C that regard q as one
    of their corresponding k-nearest neighbors on G. Many existing approaches answer either the RkNN
    query or the BRkNN query. However, different from these approaches, we make the first attempt to
    propose a novel top-n query based on the concept of BRkNN queries in this thesis, which ranks the
    data points in G and retrieves the top-n ones according to the cardinalities of the corresponding
    BRkNN answer sets. For efficiently answering this top-n query, we construct the Voronoi Diagram
    of G to index the data points in G and C. The information related to the Voronoi Diagram of G can
    help to quickly compute the upper bounds of the cardinalities, thus efficiently pruning some
    candidate results. Moreover, based on an existing approach to answering the RkNN query and the
    characteristics of the Voronoi Diagram of G, we propose another method to find the candidate
    region regarding a BRkNN query, which tightens the corresponding search space. Finally, based on
    the triangle inequality, we also propose an efficient refinement algorithm for finding the exact
    BRkNN answer sets from the candidate regions. To evaluate our whole approach to answering the
    novel top-n query, it is compared with a naïve approach which applies a state-of-the-art algorithm
    for answering the BRkNN query to each data point in G. The experiment results reveal that our
    approach outperforms the naïve approach. Moreover, our approach to answering a single BRkNN
    query also outperforms this existing algorithm.dI

    Acknowledgement i Abstract ii Table of Contents iii List of Figures iv 1 Introduction 1 2 Related Works 3 3 Preliminaries 5 A Notation and Problem Definition 5 B Index Structure 6 C Properties of Voronoi Diagram for Candidate Pruning 7 4 BrTop-n Query Processing 10 A Pre-processing of Our Approach 10 B The BrTop-n Query Processing 11 5 Performance Evaluation 19 A. Descriptions of Test Datasets and Experiment Factors 19 B. Experiment Results Regarding BrTop-n 20 C Experiment Results Regarding a Single BRkNN Query 23 D. Preprocessing Cost 25 6 Conclusion and Future Works 26 7 Reference 27

    [1] E. Achtert, C. B¨ohm, P. Kr¨oger, P. Kunath, A. Pryakhin,and M. Renz.
    Efficient Reverse k-Nearest Neighbor Search in Arbitrary Metric Spaces. In
    Proceedings of the 25th ACM SIGMOD International Conference on Management of
    Data. SIGMOD2006, Chicago, Illinois, USA, pp. 515-526.
    [2] E. Achtert, H.P. Kriegel, P. Kröger, M. Renz, and A. Züfle. Reverse k-Nearest
    Neighbor Search in Dynamic and General Metric Databases. In Proceedings of
    the 12th International Conference on Extending Database Technology ,EDBT2009, Saint Petersburg,
    Russia, pp. 886-897
    [3] R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis. Nearest Neighbor and
    Reverse Nearest Neighbor Queries for Moving Objects. In proceeding of the 6th
    International Database Engineering & Applications Symposium, IDEAS2002,
    Edmonton, Canada, pp. 44-53.
    [4] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.
    Computational Geometry: Algorithms and Applications. Springer Verlag, 2nd edition,
    2000.
    [5] C. Böhm, B.C. Ooi, C. Plant, and Y. Yan. Efficiently Processing Continuous
    k-NN Queries on Data Streams. In Proceedings of the 23rd International Conference
    on Data Engineering, ICDE2007, Istanbul, Turkey, pp. 156-165.
    [6] M.A. Cheema, X. Lin, Y. Zhang, W. Wang, and W. Zhang. Lazy Updates: An
    Efficient Technique to Continuously Monitoring Reverse kNN. PVLDB 2, 1, (Aug.
    2009) pp. 1138-1149.
    [7] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method for
    Similarity Search in Metric Spaces. In Proceedings of the 23th Very Large Data Base,
    VLDB1997, Athens, Greece, pp. 426-435.
    [8] O. Cheong, A. Vigneron, and J. Yon. Reverse nearest neighbor queries in fixed
    dimension. To appear in Int. J. Comput. Geom. Appl., arXiv: 0905.4441v2
    [9] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In
    Proceedings of the 3th ACM SIGMOD Annual Meeting, SIGMOD1984, Boston,
    Massachusetts, pp. 47-57.
    [10] Flip Korn, S. Muthukrishnan, “Influence Set Base on Reverse Nearest
    Neighbor” In Proceedings of the 19th ACM SIGMOD International Conference on
    Management of Data, SIGMOD2000, Dallas, Texas, pp. 201-212.
    28
    [11] J. M. Kang, M. F. Mokbel, S. Shekhar, T. Xia, and D. Zhang. Continuous
    Evaluation of Monochromatic and Bichromatic Reverse Nearest Neighbors. In
    Proceedings of the 23rd International Conference on Data Engineering, ICDE2007,
    Istanbul, Turkey, pp. 806-815.
    [12] X.Lian, L. Chen. Efficient processing of probabilistic reverse nearest neighbor
    queries over uncertain data. In VLDB J. 18, 3 (Jun. 2009) pp. 787-808.
    [13] I. Stanoi, D. Agrawal, and A.E. Abbadi. Reverse Nearest Neighbor for
    Dynamic Database. In Proceedings of the 19th ACM SIGMOD Workshop on Research
    Issues in Data Mining and Knowledge Discovery, SIGMOD2000, Dallas, Texas, pp.
    44-53.
    [14] A. Singh, H. Ferhatosmanoglu, A.S. Tosun. High Dimensional Reverse Nearest
    Neighbor Queries. In Proceedings of the 12th ACM CIKM International Conference
    on Information and Knowledge Management, CIKM2003, New Orleans, Louisiana,
    USA, pp. 91-98.
    [15] Spatial Index Library, http://www2.research.att.com/~marioh/spatialindex/
    [16] H.L. Sun, C. Jiang, J.L. Liu, and L. Sun. Continuous Reverse Nearest Neighbor
    Queries on Moving Objects in Road Networks. In Proceedings of 9th International
    Conference on Web-Age Information Management, WAIM2008, Zhangjiajie, China,
    pp. 238-245.
    [17] I. Stanoi, M. Riedewald, D. Agrawal, and A.E. Abbadi. Discovery of Influence
    Sets in Frequently Updated Databases. In Proceedings of 27th International
    Conference on Very Large Data Bases, VLDB2001, Roma, Italy, pp. 99-108.
    [18] Y. Tao, D. Papadias, and X. Lian. Reverse kNN Search in Arbitrary
    Dimensionality. In Proceedings of the 30th Very Large Data Base, VLDB2004,
    Toronto, Canada, pp. 744-755.
    [19] R.C.W. Wong, M.T. Özsu, P.S. Yu, A.W.C. Fu, L. Liu. Efficient Method for
    Maximizing Bichromatic Reverse Nearest Neighbor. PVLDB, 2, 1 (Aug. 2009) pp.
    1126-1137.
    [20] W. Wu, F. Yang, C.Y. Chan, and K.L. Tan. FINCH: Evaluating Reverse
    K-Nearest-Neighbor Queries on Location Data. PVLDB 1, 1 (August. 2008) pp.
    1056-1067.
    [21] C. Xia, W. Hsu, and M.L. Lee. ERkNN: Efficient Reverse k-Nearest Neighbors
    Retrieval with Local kNN-Distance Estimation. In Proceedings of the 14th ACM
    CIKM International Conference on Information and Knowledge Management,
    29

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE