研究生: |
林威浩 Lin,Wei Hao |
---|---|
論文名稱: |
p-GaN/AgSn與p-GaN/AgCu反射式歐姆電極光電特性與熱穩定性之研究 Study of Optoelectric Properties and Thermal Stability of p-GaN/AgSn and p-GaN/AgCu Reflective Ohmic Contacts |
指導教授: |
黃倉秀
Huang,Tsung Shiew |
口試委員: |
黃金花
Huang,Jin Hua 洪慧芬 Hong,Hui Fen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 反射式歐姆電極 、光電特性 、熱穩定性 |
外文關鍵詞: | Optoelectric, AgSn, AgCu |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究p-GaN的光反射式歐姆電極,以雙電子槍蒸鍍系統製備Sn(2nm)/Ag(150nm)、AgSn(2 at%)、AgCu(4 at%)和AgCu(8 at%)等四組試片,以熱蒸鍍法製備AgCu(T.E.),加上以單電子槍蒸鍍合金材料製備AgCu(S.E.)等,共六組試片。探討不同合金成分、爐管退火(FA)與快速退火(RTA)兩種不同退火方式,以及不同薄膜蒸鍍製程,對於AgSn及AgCu合金反射式歐姆電極光電特性的影響,包含反射式歐姆電極的光反射率、金屬薄膜片電阻與特徵接觸電阻,以及各性質之熱穩定性。我們發現Sn(2nm)/Ag即可抑制Ag薄膜的高溫退火凝聚,而且其餘的AgSn及AgCu合金薄膜經爐管退火或快速退火,也無凝縮現象產生,且400℃時效退火1小時後反射率變化甚小,金屬薄膜片電阻與特徵接觸電阻數值亦無顯著變化。綜合考量光反射率、金屬薄膜片電阻、特徵接觸電阻與熱穩定性,AgSn(2 at%)和AgCu(4 at%)合金有很優異之表現,以製作p-GaN覆晶式LED電極之應用觀點來看,AgSn(2 at%)合金在石英爐管內,於大氣環境下進行500℃退火5分鐘後,可以得到460nm藍光具有102%的反射率,金屬薄膜片電阻約為0.15 Ω/□,特徵接觸電阻約為1.2 × 10-3 Ω-cm2,時效退火後更低至7 × 10-4 Ω-cm2,具備優良的熱穩定性。而AgCu(4 at%)合金在石英爐管內,於大氣環境下進行500℃退火10分鐘後,可以得到460nm藍光具有102%的光反射率,金屬薄膜片電阻約為0.12 Ω/□,特徵接觸電阻約為8.2 × 10-4 Ω-cm2,時效退火後更低至5.5 × 10-4 Ω-cm2,且熱穩定性佳。兩者都是GaN藍光LED的優良反射式歐姆電極。
This thesis study about optoelectric properties and thermal stability of p-GaN reflective ohmic contacts Sn (2nm) / Ag (150nm), AgSn (2 at%), AgCu (4 at%) and AgCu (8 at%) four specimens which are prepared by due electron guns evaporation and AgCu (T.E.) prepared by thermal evaporation plus a AgCu(S.E.) prepared by single electron gun evaporation six specimens in total. We discuss the effect, including light reflectivity, sheet resistance of the metal thin film, specific contact resistance and thermal stability, on the optoelectric properties of AgSn and AgCu alloy reflective ohmic contacts, be influence by different alloy composition, different annealing methods, including furnace annealing and rapid thermal annealing, and different deposition process. We found that Sn (2nm) / Ag film can inhibit the aggregation of Ag film at high temperature annealing, and there are no aggregation be found on AgSn and AgCu thin film after furnace annealing and rapid thermal annealing, and after aging at 400 ℃ for one hour, the influence on reflectivity, sheet resistance of the metal thin film and specific contact resistance are very small. Comprehensive consideration above-mentioned properties, AgSn (2 at%) and AgCu (4 at%) alloys thin films are excellent. After anneal 5min in air at 500 ℃, the AgSn(2 at%) reflectors produce low specific contact resistance(1.2 × 10-3 Ω-cm2),and even lower after aging(7 × 10-4 Ω-cm2), high reflectivity(102% at 460nm),good sheet resistance of the metal thin film(0.15 Ω/□), and good thermal stability. After anneal 5min in air at 500 ℃, the AgCu(4 at%) reflectors produce low specific contact resistance(8.2 × 10-4 Ω-cm2),and even lower after aging(5.5 × 10-4 Ω-cm2), high reflectivity(102% at 460nm),good sheet resistance of the metal thin film(0.12 Ω/□), and good thermal stability.
[1]A. Y. C. Yu, “Electron tunneling and contact resistance of metal-silicon contact barriers,” Solid State Electron. 13 (1970) 239.
[2]C. Y. Chang, Y. K. Fang, and S. M. Sze, “Specific contact resistance of metal-semiconductor barriers,” Solid State Electron. 14 (1971) 541.
[3]S. M. Sze, Physics of Semiconductor Devices (Wiley, New York) (1981) 245.
[4]F. A. Padovani and R. Stratton, “Field and thermionic-field emission in Schottky barriers,” Solid State Electron. 9 (1966) 695.
[5]C. R. Crowell and V. L. Rideout, “Normalized thermionic-field (TF) emission in metal-semiconductor (Schottky) barriers,” Solid State Electron. 12 (1969) 89.
[6]R. Stratton and F. A. Padovani, “Differential resistance peaks of Schottky barrier diodes,” Solid State Electron. 10 (1967) 813.
[7]G. S. Marlow, and M. B. Das, “The effects of contact size and non-zero metal resistance on the determination of specific contact resistance,” Solid State Electron. 25 (1982) 91.
[8]V. Y. Niskov and G. A. Kubetskii, “Characteristics of AuGeNi ohmic contacts to GaAs,” Sov. Phys. Semicond. 4 (1971) 1553.
[9]W. G. Bickley, Bessel Functions, University Press, Cambridge (1960) 220-225.
[10]J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise,G.Christenson, Y.C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Götz,N. F. Gardner, R. S. Kern, and S. A. Stockmam, “High-power AlGaInN flip-chip light-emitting diodes,” Appl. Phys. Lett.78 (2001) 3379.
[11]J.O. Song, J.S. Ha, and T.Y. Seong, “Ohmic-contact technology for GaN-based light-emitting diodes: role of P-type contact,” IEEE Trans. Electron Devices 57 (2010) 42.
[12]Hidenori Ishikawa, Setsuko Kobayashi, Y. Koide, S. Yamasaki, S.Nagai, J. Umezaki, M. Koike, Masanori Murakami, “Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces,” J. Appl. Phys. 81 (1996) 1315.
[13]J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim, “Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment,” Appl. Phys. Lett. 73 (1998) 2953.
[14]J. Sun, K. A. Rickert, J. M. Redwing, A. B. Ellis, F. J. Himpsel, andT. F. Kuech, “p-GaN surface treatments for metal contacts,” Appl. Phys. Lett. 76 (2000) 415.
[15]H. Ishikawa, S. Kobaya,Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and M. Murakami, “Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces,” J. Appl. Phys. 81 (1997) 1315.
[16]Y. Ohba and A. Hatano, “H-atom incorporation in Mg-doped GaN grown by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. 33 (1994) L1367.
[17]Shuji Nakamura, Naruhito Ieasa, Masayuki Senoh and Takashi Mukai, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys, 31 (1992) 1258.
[18]Hiroshi Amano, Masahiro Kito, Kazumasa Hiramatsu, Isamu Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI) ,” Jpn. J. Appl. Phys, 28 (1989) L2112.
[19]Shuji Nakamura, Takashi Mukai, Masayuki Senoh, Naruhito Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys, 31 (1992) 139.
[20]Yow-Jon Lin, “Activation mechanism of annealed Mg-doped GaN in air,” Appl. Phys. Lett, 84 (2004) 2760.
[21]李正中,薄膜光學與鍍膜技術,藝軒圖書出版社,2002年,144頁。
[22]J. O. Song, J. S. Kwak, Y. Park, and T. Y. Seong, “Ohmic and degradation mechanisms of Ag contacts on p-type GaN,” Appl. Phys. Lett.86 (2005) 062104.
[23]S. K. Sharma, “Hillock formation,hole growth and agglomeration in thin silver films,” J. Spitz, Thin Solid Films. 65 (1980) 348.
[24]J. Y. Kim, S. I. Na, G. Y. Ha, M. K. Kwon, I. K. Park, J. H. Lim, and S. J. Park, “Thermally stable and highly reflective AgAl alloy for enhancing light extraction efficiency in GaN light-emitting diodes,” Appl. Phys. Lett. 88 (2006) 043507.
[25]H. G. Hong, J. O. Song, T. Lee, I. T. Ferguson, J. S. Kwak, and T. Y. Seong, “Improvement of the reverse leakage behavior of Ag-based ohmic contacts for GaN-based light-emitting diodes using MgZnO interlayer,” Mater. Sci. Eng. B. 129 (2006) 176.
[26]D. S. Zhao, S. M. Zhang, L. H. Duan, Y. T. Wang, D. S. Jiang, W. B. Liu, B. S. Zhang, and H. Yang, “Effects of Ag on electrical properties of Ag/Ni/p-GaN ohmic contact,” Phys. Lett. 24 (2007) 1741.
[27]H. W. Jang and J. L. Lee, “Mechanism for ohmic contact formation of Ni/Ag contacts on p-type GaN,” Appl. Phys. Lett. 85 (2004) 5920.
[28]J. Cho, H. Kim, Y. Park, and E. Yoon, “Effects of p-electrode reflectivity on extraction efficiency of nitride-based light-emitting diodes,” Appl. Phys. Expr. 1 (2008) 052001.
[29]H. W. Jang and J. L. Lee, “Low-resistance and high-reflectance Ni/Ag/Ru/Ni/Au ohmic contact on p-type GaN,” Appl. Phys. Lett. 85 (2004) 4421.
[30]L. C. Chen and Y. M. Ho, “Ag and zinc oxide-doped indium oxide ohmic contacts to p-type GaN for flip-chip LED applications,” J. Phys. D: Appl. Phys. 40 (2007) 6514.
[31]W. K. Hong, J. O. Song, H. G. Hong, K. Y. Ban, T. Lee, J. S. Kwak, Y. Park, and T. Y. Seong, “Highly reflective and low resistance indium tin oxide/Ag ohmic contacts to p-type GaN for flip-chip light emitting diodes,” Electrochemical and Solid-State Lett. 8 (11) (2005) G320.
[32]J. O. Song, J. S. Kwak, and T. Y. Seong, “Cu-doped indium oxide/Ag ohmic contacts for high-power flip-chip light-emitting diodes,” Appl. Phys. Lett. 86 (2005) 062103.
[33]J. Y. Kim, S. I. Na, G. Y. Ha, M. K. Kwon, I. K. Park, J. H. Lim, and S. J. Park, “Thermally stable and highly reflective AgAl alloy for enhancing light extraction efficiency in GaN light-emitting diodes,” Appl. Phys. Lett. 88 (2006) 043507.
[34]J. H. Son, G. H. Jung, and J. L. Lee, “Enhancement of light reflectance and thermal stability in Ag–Cu alloy contacts on p-type GaN,” Appl. Phys. Lett. 93 (2008) 012102.
[35]H. Kim, K. H. Baik, J. Cho, J. W. Lee, S. Yoon, H Kim, S. N Lee, C. Sone, Y. Park, and T. Y. Seong, “High-reflectance and thermally stable AgCu alloy p-type reflectors for GaN-based light-emitting diodes,” IEEE Phot. Tech. Lett.19 (2007) 336.
[36]J. H. Son, G. H. Jung, and J. L. Lee, “Highly reflective Ag-Cu alloy-based ohmic contact on p-type GaN using Ru overlayer,” Opt. Lett. 33 (2008) 2907.
[37]R. Kawai, T. Mori, W. Ochiai, A. Suzuki, M Iwaya, H. Amano, S. Kamiyama, and I. Akasaki, “High‐reflectivity Ag‐based p‐type ohmic contacts for blue light‐emitting diodes,” Phys. Status Solidi C 6 (S2) (2009) S830.
[38]Y. H. Song, J. H. Son, G. H. Jung, and J. L. Lee, “Effects of Mg additive on inhibition of Ag agglomeration in Ag-based ohmic contacts on p-GaN,” Electrochm. Solid-State Lett. 13 (2010) H173.
[39]G. H. Jung, J. H. Son, Y. H. Song, and J. L. Lee, “Strain induced suppression of silver agglomeration of indium-containing silver contact,” Appl. Phys. Lett.96 (2010) 201904.
[40]B. Y. Cheng, I. C. Chen, C. H. Kuo, and L. C. Chang, “Highly Reflective Ag∕ La Bilayer Ohmic Contacts to p-Type GaN,” ECS Transactions, 44 (2012) 1285.
[41]楊承叡,國立清華大學材料與工程學系碩士學位論文, (2009)。
[42]時聖立,國立清華大學材料與工程學系碩士學位論文, (2014)。
[43]I. Karakaya, and W.T. Thompson, “The Ag-Sn (silver-tin) system,” Bul. Alloy Phase Diagrams 8 (4) (1987) 341.
[44]P. R. Subramanian, and J. H. Perepezko, “The Ag-Cu (silver-copper) system,” J. Phase Equilibria 14 (1) (1993) 63.
[45]S. M. Sze, Semiconductor devices, physics and technology (Wiley ; Bell Telephone Lab, New York) (1985) p.37