研究生: |
魏瑜萱 Wei, Yu-Hsuan. |
---|---|
論文名稱: |
電化學沉積法合成奈米結構電極應用於太陽能光電與生醫感測 Synthesis of nano-structure catalyst by electrochemical deposition for solar cell and biosensor applications. |
指導教授: |
曾繁根
Tseng, Fan-Gang. |
口試委員: |
薛康琳
Hsueh, Kan-Lin 王本誠 Wang, Pen-Cheng 謝建國 Hsieh, Chien-Kuo 葉宗洸 Yeh, Tsung-Kuang |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 染料敏化 、非酶葡萄糖感測 、白金觸媒 、電化學 |
外文關鍵詞: | dye-sensitized solar cells, non-enzymatic glucose sensing, platinum, electrochemical |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,分為兩個不同的部分,包括染料敏化太陽能電池和非酶葡萄糖感測器應用。研究摘要如下所示。
第一部分,奈米鉑立方體通過電化學沉積方法沉積在導電玻璃上,作為染料敏化太陽能電池的對電極。在這項研究中,我們控制晶面的生長,以在室溫下合成單晶PtNCs。通過場發射掃描電子顯微鏡和高解析穿透式電子顯微鏡檢查ECD PtNCs的形態和奈米結晶結構。通過原子力顯微鏡檢查ECD PtNCs的表面粗糙度。通過循環伏安法,Tafel極化和電化學阻抗譜分析了ECD PtNCs的電化學性質。通過質譜儀檢查Pt負載。使用N719染料敏化的二氧化鈦工作電極,碘基電解質和CE組裝DSSC。在AM1.5(100mWcm-2)的照射下檢查具有ECD PtNC CE的DSSC的光電轉換效率(PCE)。該研究中的PtNCs呈現出單晶奈米結構,其可以提高電子遷移率並提高電荷轉移率。在這項工作中,Pt膜和PtNCs的電催化質量活性(MA)分別為1.508和4.088 mAmg-1,PtNCs的MA是商用Pt薄膜的MA的2.71倍。具有脈衝-ECD PtNC CE的DSSC顯示出6.48%的PCE,其高於使用商用Pt薄膜CE的電池(PCE為6.18%)。與通過電子束蒸發方法製造的商用Pt薄膜CE相反,我們的脈衝ECD PtNCs使Pt催化性能最大化為DSSC中的CE。結果表明,PtNCs對DSSCs中的碘化物/三碘化物氧化還原對反應起到了良好的催化作用,為電化學催化應用提供了潛在的策略。
第二部分,非酶葡萄糖感測器由電化學沉積鉑奈米晶體設計和製造,包括鉑奈米球(Pt NS),鉑奈米花瓣(Pt NR)和鉑奈米立方體(Pt NC)在導電玻璃上。通過恆電位或脈衝雙電位沉積進行形態和生長類型的兩種控制,以分別在室溫下合成Pt NS,Pt NR或Pt NC。在三種Pt奈米晶體中,Pt NC對具有單晶結構的葡萄糖(葡萄糖內酯)的氧化顯示出最高的電催化活性。開發的Pt NC電極顯示較快速響應時間(2 s),高靈敏度20.75μA/ mM·cm,檢測限為0.7μM(S / N比= 3)。通過將葡萄糖氧化電位設定為0.1V,Pt NC電極對濃度範圍為0.33至12.50 mM的葡萄糖提供線性依賴性(R2 = 0.99086)。 Pt NC電極顯示出穩定,高靈敏度,低工作氧化電位,低Pt負載,以及在感測葡萄糖時具有快速的安培電流響應,具有優異的重現性和選擇性,具有潛力的非酶葡萄糖感測器應用電極
In this report was divided two different parts that included dye-sensitized solar cell and non-enzymatic biosensor applications. Those study abstract as shown below.
The first part, Platinum nocubes (PtNCs) were deposited onto a fluorine-doped tin oxide glass by electrochemical deposition (ECD) method and utilized as a counter electrode (CE) for dye-sensitized solar cells (DSSCs). In this study, we controlled the growth of the crystalline plane to synthesize the single-crystal PtNCs at room temperature. The morphologies and crystalline nanostructure of the ECD PtNCs were examined by field emission scanning electron microscopy and high-resolution transmission electron microscopy. The surface roughness of the ECD PtNCs was examined by atomic force microscopy. The electrochemical properties of the ECD PtNCs were analyzed by cyclic voltammetry, Tafel polarization, and electrochemical impedance spectra. The Pt loading was examined by inductively coupled plasma mass spectrometry. The DSSCs were assembled via an N719 dye-sensitized titanium dioxide working electrode, an iodine-based electrolyte, and a CE. The photoelectric conversion efficiency (PCE) of the DSSCs with the ECD PtNC CE was examined under the illumination of AM 1.5 (100 mWcm−2). The PtNCs in this study presented a single-crystal nanostructure that can raise the electron mobility to let up the charge-transfer impedance and promote the charge-transfer rate. In this work, the electrocatalytic mass activity (MA) of the Pt film and PtNCs was 1.508 and 4.088 mAmg−1, respectively, and the MA of PtNCs was 2.71 times than that of the Pt film. The DSSCs with the pulse-ECD PtNC CE showed a PCE of 6.48 %, which is higher than the cell using the conventional Pt film CE (a PCE of 6.18 %). In contrast to the conventional Pt film CE which is fabricated by electron beam evaporation method, our pulse-ECD PtNCs maximized the Pt catalytic properties as a CE in DSSCs. The results demonstrated that the PtNCs played a good catalyst for iodide/triiodide redox couple reactions in the DSSCs and provided a potential strategy for electrochemical catalytic applications.
The second part, non-enzymatic glucose sensors were designed and fabricated by electrochemical deposited platinum nano-crystals, including Platinum nanosphere (Pt NS), Platinum nanorose (Pt NR), and Platinum nanocubes (Pt NC) on fluorine-doped tin oxide glass. The control of the morphologies and growth types was conducted by either potentiostatic or pulse-mode potentiostatic deposition for synthesizing Pt NS, Pt NR, or Pt NC, respectively, at room temperature. Among three Pt nano-crystals, The Pt NC displayed the highest electrocatalytic activity to oxidation of glucose (glucolactone) owning to the single crystalline structure. The developed Pt NC sensor showed a fast response time (2 s), a high sensitivity of 20.75 μA/mM·cm, and a detection limit of 0.7μM (at S/N ratio = 3). By setting glucose oxidation potential to 0.1 V, the Pt NC electrode provided a linear dependence (R2 =0.99086) to glucose in a concentration range from 0.33 to 12.50 mM. The Pt NC electrodes showed stable, highly sensitive, low working oxidation potential, low loading of Pt, and rapid amperometric response in sensing glucose with excellent reproducibility and selectivity, possessing a great potential for non-enzymatic glucose sensing applications.
[1] W.J. Zhao, S.Q. Wang, C.Q. Feng, H.M. Wu, L. Zhang, J.J. Zhang, Novel Cobalt-Doped Ni0.85Se Chalcogenides (CoxNi0.85-xSe) as High Active and Stable Electrocatalysts for Hydrogen Evolution Reaction in Electrolysis Water Splitting, Acs Appl Mater Inter, 10 (2018) 40491-40499.
[2] J. Weiss, Novo Nordisk And Its Promising Diabetes Drugs, DOI (2015).
[3] jylscreations.com, symptoms-of-diabetes, 2015.
[4] W.H. Organization, World Health Day 2016: Diabetes, 2016.
[5] M. Gratzel, Low cost and efficient photovoltaic conversion by nanocrystalline solar cells, P Indian as-Chem Sci, 107 (1995) 607-619.
[6] M.G. A. Hagfeldt, Light-Induced Redox Reactions in Nanocrystalline Systems, Chem.Rev., 95 (1995) 49-68.
[7] G.P. Smestad, Dye sensitized and organic solar cells, Sol Energ Mat Sol C, 76 (2003) 1-2.
[8] G.F. Wang, X.P. He, L.L. Wang, A.X. Gu, Y. Huang, B. Fang, B.Y. Geng, X.J. Zhang, Non-enzymatic electrochemical sensing of glucose, Microchim Acta, 180 (2013) 161-186.
[9] F. Largeaud, K.B. Kokoh, B. Beden, C. Lamy, On the Electrochemical Reactivity of Anomers - Electrocatalytic Oxidation of Alpha-D-Glucose and Beta-D-Glucose on Platinum-Electrodes in Acid and Basic-Media, J Electroanal Chem, 397 (1995) 261-269.
[10] Y. Wang, H. Xu, J.M. Zhang, G. Li, Electrochemical sensors for clinic analysis, Sensors-Basel, 8 (2008) 2043-2081.
[11] Z.J. Yang, Y. Tang, J. Li, Y.C. Zhang, X.Y. Hu, Facile synthesis of tetragonal columnar-shaped TiO2 nanorods for the construction of sensitive electrochemical glucose biosensor, Biosens Bioelectron, 54 (2014) 528-533.
[12] J.L. Lai, H.S. Chang, T.Y. Lin, C.F. Tai, R.J. Chen, Electrochemical Enzyme-electrode Biosensor for Glucose Detection, Int C Commun Circuit, DOI (2008) 1346-1350.
[13] J.H. Lee, H.T. Vu, G.J. Kost, Oxygen-insensitive electrochemical biosensor for glucose monitoring., Clin Chem, 42 (1996) 282-282.
[14] J.H. Cho, M.C. Shin, H.S. Kim, Electrochemical adsorption of glucose oxidase onto polypyrrole film for the construction of a glucose biosensor, Sensor Actuat B-Chem, 30 (1996) 137-141.
[15] M. Morikawa, N. Kimizuka, M. Yoshihara, T. Endo, New colorimetric detection of glucose by means of electron-accepting indicators: Ligand substitution of [Fe(acac)(3-n)(phen)(n)](n+) complexes triggered by electron transfer from glucose oxidase, Chemistry-a European Journal, 8 (2002) 5580-5584.
[16] J.C. Lin, M.K. Hsu, H.T. Hou, J.Y. Wu, The Fabrication of Glucose Sensor by Nanoporous Silicon Film and Its Switching Characteristics on Visible Color Light Response, Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2011, 7980 (2011).
[17] K. Tohda, M. Gratzl, Micro-miniature autonomous optical sensor array for monitoring ions and metabolites 2: Color responses to pH, K+ and glucose, Anal Sci, 22 (2006) 937-941.
[18] Sensor detects glucose by large color change, Chem Eng News, 78 (2000) 79-79.
[19] Y. Miwa, M. Nishizawa, T. Matsue, I. Uchida, A Conductometric Glucose Sensor-Based on a Twin-Microband Electrode Coated with a Polyaniline Thin-Film, B Chem Soc Jpn, 67 (1994) 2864-2866.
[20] S. Mansouri, J.S. Schultz, A Miniature Optical Glucose Sensor Based on Affinity Binding, Bio-Technol, 2 (1984) 885-890.
[21] E. Scavetta, B. Ballarin, D. Tonelli, A Cheap Amperometric and Optical Sensor for Glucose Determination, Electroanal, 22 (2010) 427-432.
[22] X.D. Wang, H.X. Chen, T.Y. Zhou, Z.J. Lin, J.B. Zeng, Z.X. Xie, X. Chen, K.Y. Wong, G.N. Chen, X.R. Wang, Optical colorimetric sensor strip for direct readout glucose measurement, Biosens Bioelectron, 24 (2009) 3702-3705.
[23] G.J. Worsley, G.A. Tourniaire, K.E.S. Medlock, F.K. Sartain, H.E. Harmer, M. Thatcher, A.M. Horgan, J. Pritchard, Continuous blood glucose monitoring with a thin-film optical sensor, Clin Chem, 53 (2007) 1820-1826.
[24] M. Garcia, C. Perego, F.E. Hernandez, Truly non-invasive glucose optical sensor, Abstr Pap Am Chem S, 231 (2006).
[25] H. Ul Hassan, K. Nielsen, S. Aasmul, O. Bang, Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors, Biomed Opt Express, 6 (2015) 5008-5020.
[26] J.C. Pickup, F. Hussain, N.D. Evans, O.J. Rolinski, D.J.S. Birch, Fluorescence-based glucose sensors, Biosens Bioelectron, 20 (2005) 2555-2565.
[27] P. Harms, Y. Kostov, G. Rao, Fluorescence-based glucose sensors., Abstr Pap Am Chem S, 221 (2001) U80-U80.
[28] F.Q. Tang, X.W. Meng, D. Chen, J.G. Ran, C.Q. Zheng, Glucose biosensor enhanced by nanoparticles, Sci China Ser B, 43 (2000) 268-274.
[29] J. Liu, J. Wang, A novel improved design for the first-generation glucose biosensor, Food Technol Biotech, 39 (2001) 55-58.
[30] J.O. Bockris, Z.S. Minevski, Electrocatalysis - Past, Present and Future, Electrochim Acta, 39 (1994) 1471-1479.
[31] D. Pletcher, Electrocatalysis - Present and Future, J Appl Electrochem, 14 (1984) 403-415.
[32] M.W. Hsiao, R.R. Adzic, E.B. Yeager, Electrochemical oxidation of glucose on single crystal and polycrystalline gold surfaces in phosphate buffer, J Electrochem Soc, 143 (1996) 759-767.
[33] L.A. Larew, D.C. Johnson, Transient Generation of Diffusion Layer Alkalinity for the Pulsed Amperometric Detection of Glucose in Low Capacity Buffers Having Neutral and Acidic Ph Values, J Electroanal Chem, 264 (1989) 131-147.
[34] G. Kokkinidis, J.M. Leger, C. Lamy, Structural Effects in Electrocatalysis - Oxidation of D-Glucose on Pt(100), (110) and (111) Single-Crystal Electrodes and the Effect of Upd Adlayers of Pb, Tl and Bi, J Electroanal Chem, 242 (1988) 221-242.
[35] Y.B. Vassilyev, O.A. Khazova, N.N. Nikolaeva, Kinetics and Mechanism of Glucose Electrooxidation on Different Electrode-Catalysts .2. Effect of the Nature of the Electrode and the Electrooxidation Mechanism, J Electroanal Chem, 196 (1985) 127-144.
[36] Y.B. Vassilyev, O.A. Khazova, N.N. Nikolaeva, Kinetics and Mechanism of Glucose Electrooxidation on Different Electrode-Catalysts .1. Adsorption and Oxidation on Platinum, J Electroanal Chem, 196 (1985) 105-125.
[37] L.D. Burke, Premonolayer Oxidation and Its Role in Electrocatalysis, Electrochim Acta, 39 (1994) 1841-1848.
[38] J.H. S. Ernst, The electrooxidation of glucose in phosphate buffer solutions: Part I. Reactivity and kinetics below 350 mV/RHE, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 100 (1979) 173-183.
[39] E. Skou, The electrochemical oxidation of glucose on platinum—I. The oxidation in 1 M H2SO4, Electrochim Acta, 22 (1977) 313-318.
[40] M.L.B. Rao, R.F. Drake, Studies of Electrooxidation of Dextrose in Neutral Media, J Electrochem Soc, 116 (1969) 334-&.
[41] F. Xiao, F. Zhao, D. Mei, Z. Mo, B. Zeng, Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M = Ru, Pd and Au) nanoparticles on carbon nanotubes–ionic liquid composite film, Biosensors and Bioelectronics, 24 (2009) 3481-3486.
[42] L.-Q. Rong, C. Yang, Q.-Y. Qian, X.-H. Xia, Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes, Talanta, 72 (2007) 819-824.
[43] M.Q. Guo, H.S. Hong, X.N. Tang, H.D. Fang, X.H. Xu, Ultrasonic electrodeposition of platinum nanoflowers and their application in nonenzymatic glucose sensors, Electrochim Acta, 63 (2012) 1-8.
[44] Q. Xu, L. Yin, C. Hou, X. Liu, X. Hu, Facile fabrication of nanoporous platinum by alloying–dealloying process and its application in glucose sensing, Sensors and Actuators B: Chemical, 173 (2012) 716-723.
[45] X.C. Zhou, X.Y. Zheng, R.X. Lv, D.X. Kong, Q.L. Li, Electrodeposition of platinum on poly(glutamic acid) modified glassy carbon electrode for non-enzymatic amperometric glucose detection, Electrochim Acta, 107 (2013) 164-169.
[46] D.Q. Ma, X.N. Tang, M.Q. Guo, H.R. Lu, X.H. Xu, Fabrication and characterization of non-enzymatic glucose sensor based on bimetallic hollow Ag/Pt nanoparticles prepared by galvanic replacement reaction, Ionics, 21 (2015) 1417-1426.
[47] K.J. Chen, W.N. Su, C.J. Pan, S.Y. Cheng, J. Rick, S.H. Wang, C.C. Liu, C.C. Chang, Y.W. Yang, C.H. Wang, B.J. Hwang, Dendritic platinum-decorated gold nanoparticles for non-enzymatic glucose biosensing, J Mater Chem B, 1 (2013) 5925-5932.
[48] S. Liu, B. Yu, T. Zhang, A novel non-enzymatic glucose sensor based on NiO hollow spheres, Electrochim Acta, 102 (2013) 104-107.
[49] Z.J. Zhuang, X.D. Su, H.Y. Yuan, Q. Sun, D. Xiao, M.M.F. Choi, An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode, Analyst, 133 (2008) 126-132.
[50] K.M. El Khatib, R.M.A. Hameed, Development of Cu2O/Carbon Vulcan XC-72 as non-enzymatic sensor for glucose determination, Biosens Bioelectron, 26 (2011) 3542-3548.
[51] H.Y. Yu, M.Q. Xu, S.H. Yu, G.C. Zhao, A Novel Non-Enzymatic Glucose Sensor Based on CuO-Graphene Nanocomposites, Int J Electrochem Sc, 8 (2013) 8050-8057.
[52] Y. Wang, W.S. Bai, F. Nie, J.B. Zheng, A Non-Enzymatic Glucose Sensor Based on Ni/MnO2 Nanocomposite Modified Glassy Carbon Electrode, Electroanal, 27 (2015) 2399-2405.
[53] Z.C. Meng, Q.L. Sheng, J.B. Zheng, A sensitive non-enzymatic glucose sensor in alkaline media based on Cu/MnO2-modified glassy carbon electrode, J Iran Chem Soc, 9 (2012) 1007-1014.
[54] C.W. Kung, C.Y. Lin, Y.H. Lai, R. Vittal, K.C. Ho, Cobalt oxide acicular nanorods with high sensitivity for the non-enzymatic detection of glucose, Biosens Bioelectron, 27 (2011) 125-131.
[55] L. Ozcan, Y. Sahin, H. Turk, Non-enzymatic glucose biosensor based on overoxidized polypyrrole nanofiber electrode modified with cobalt(II) phthalocyanine tetrasulfonate, Biosens Bioelectron, 24 (2008) 512-517.
[56] X.W. Wang, X.C. Dong, Y.Q. Wen, C.M. Li, Q.H. Xiong, P. Chen, A graphene-cobalt oxide based needle electrode for non-enzymatic glucose detection in micro-droplets, Chemical Communications, 48 (2012) 6490-6492.
[57] N. Sattarahmady, H. Heli, A non-enzymatic amperometric sensor for glucose based on cobalt oxide nanoparticles, J Exp Nanosci, 7 (2012) 529-546.
[58] J.Z. Zheng, W.X. Zhang, Z.Q. Lin, C. Wei, W.Z. Yang, P.H. Dong, Y.R. Yan, S.R. Hu, Microwave synthesis of 3D rambutan-like CuO and CuO/reduced graphene oxide modified electrodes for non-enzymatic glucose detection, J Mater Chem B, 4 (2016) 1247-1253.
[59] D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane, Science, 323 (2009) 610-613.
[60] K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Room-temperature quantum hall effect in graphene, Science, 315 (2007) 1379-1379.
[61] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669.
[62] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438 (2005) 197-200.
[63] B. Singh, E. Dempsey, C. Dickinson, F. Laffir, Inside/outside Pt nanoparticles decoration of functionalised carbon nanofibers (Pt-19.2/f-CNF80.8) for sensitive non-enzymatic electrochemical glucose detection, Analyst, 137 (2012) 1639-1648.
[64] G. Chang, H.H. Shu, Q.W. Huang, M. Oyama, K. Ji, X. Liu, Y.B. He, Synthesis of highly dispersed Pt nanoclusters anchored graphene composites and their application for non-enzymatic glucose sensing, Electrochim Acta, 157 (2015) 149-157.