研究生: |
張耕齊 Chang, Keng Chi |
---|---|
論文名稱: |
以目標為基礎之資料處理方法建議模式 Objective-Oriented Suggestion for Data Analysis Approaches |
指導教授: |
侯建良
Hou, Jiang Liang |
口試委員: |
張國浩
Chang, Kuo Hao 廖崇碩 Liao, Chung Shou |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 350 |
中文關鍵詞: | 方法建議 、相關性推論 、模擬退火法 |
外文關鍵詞: | Decision Making, Likelihood, Simulated Annealing |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當一企業管理者因特定營運目標而需瞭解營運活動相關之狀況時,其往往針對該狀況整理、檢視所擁有之相關資料,再向專家諮詢相關資料之適切處理方法;之後,專家即因應管理者的諮詢回饋其適切之資料處理方法、以及應補充之相關資料或應注意之事項與相對應之因應原則;最後,管理者即可評選資料處理方法,並藉由所選之方法處理資料,以取得對應之分析結果而滿足需求,進而達成企業營運目標。然而,管理者可能尋求非專業領域之專家、或甚至無法尋得相關專家,而無法獲得具代表性之資料處理方法建議;其次,當管理者選擇資料處理方法時,可能不瞭解如何評選符合其需求之方法,而無法獲得適當之資訊以滿足需求。
為解決上述問題,本研究首先解析現有資料分析相關文獻,並訂定企業營運問題之10項基本元素;之後,本研究乃根據解析結果提出一套「以目標為基礎之資料處理方法建議」模式,此模式包含「企業營運問題與改善個案資料結構化方法與關聯模式建構」、「企業營運問題解析與相關資料搜尋」、「資料處理方法與細節判定」、「資料分析方法評價與篩選」等階段。「企業營運問題與改善個案資料結構化方法與關聯模式建構」階段乃釐清目標企業營運問題所包含之企業營運問題基本元素的內容,並建構「企業營運問題與改善個案之關聯模式」,「企業營運問題解析與相關資料搜尋」階段乃利用目標營運問題之結構化結果與前一階段所建構之「企業營運問題與改善個案之關聯模式」搜尋與目標企業營運問題相關之改善個案資料。「資料處理方法與細節判定」階段乃自與目標企業營運問題相關之改善個案資料中擷取資料處理方法與其對應之相關係相資訊。最後,「資料分析方法評價與篩選」階段乃針對料處理方法進行評估與篩選,以將合適知資料處理方法建議提供予管理者參考。
未來,管理者即可透過本研究發展之建議方法有效地取得可達成其目標之資料處理方法與相關細節之建議、以及此些方法於達成目標與滿足限制、偏好之綜合評價,以利管理者有效地評選資料、分析資料,進而更瞭解企業營運活動相關之狀況而達成其所設定之目標。
In order to improve efficiency for suggestion of data analysis approaches, this research develops a problem-oriented model for suggestion of data analysis approaches. Firstly, this research analyzes the historical problems the applicable data analysis approaches and other information of the original solutions which are related to data analysis. Secondly, a model is developed for analyzing the solutions related to data analysis and transforms them into structured forms. After that, the proposed model can be applied for searching related data analysis solutions based on the problem characteristics. In order to distinguish the related and the unrelated solutions, this model evaluates the likelihood between those solutions by the linear combinations of the solution characteristics. Further, this model utilizes the simulated annealing algorithm to acquire the combinations which can distinguish the related and unrelated solutions. Finally, this model can suggest the data analysis approaches according to the approaches used in the related solutions used. As a whole, the proposed model can assist managers realizing data analysis approaches in an efficient and effective way.
1. Adami, S., Giannini, S., Giorgino, R., Isaia, G., Maggi, S., Sinigaglia, L., Filipponi, P., Crepaldi, G. and Munno, O. D., 2003, “The effect of age, weight, and lifestyle factors on calcaneal quantitative ultrasound: The ESOPO study,” Osteoporosis International, Vol. 14, No. 3, pp. 198-207.
2. Adhikari, R., 2015, “A neural network based linear ensemble framework for time series forecasting,” Neurocomputing, Vol. 157, No. 1, pp. 231-242.
3. Ahmed, M. and Ahmad, N., 2011, “An application of Pareto analysis and cause-and-effect diagram (CED) for minimizing rejection of raw materials in lamp production process,” Management Science and Engineering, Vol. 5, No. 3, pp. 87-95.
4. Aljahdali, S. H., Sheta, A. and Rine, D., 2001, “Prediction of software reliability: A comparison between regression and neural network non-parametric models,” IEEE International Conference, Computer Systems and Applications, pp.470-473.
5. Andrawis, R. R., Atiya, A. F. and El-Shishiny, H., 2011, “Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition,” International Journal of Forecasting, Vol. 27, No. 3, pp. 672-688.
6. Andrews, J. D. and Ridley, L. M., 2001, “Reliability of sequential systems using the cause-consequence diagram method,” Journal of Process Mechanical Engineering, Vol. 215, No. 3, pp. 207-220.
7. Baumgartner, R., Ryner, L., Richter, W., Summers, R., Jarmasz, M. and Somorjai R., 2000, “Comparison of two exploratory data analysis methods for fMRI: Fuzzy clustering vs. principal component analysis,” Magnetic Resonance Imaging, Vol. 18, No. 1, pp. 89–94.
8. Carr, V. and Tah, H. M., 2001, “A fuzzy approach to construction project risk assessment and analysis: Construction project risk management system,” Advances in Engineering Software, Vol. 32, No. 10-11, pp. 847-857.
9. Ceylan, R. and Özbay, Y., 2007, “Comparison of FCM, PCA and WT techniques for classification ECG arrhythmias using artificial neural network,” Expert Systems with Applications, Vol. 33, No. 2, pp. 286-295.
10. Cheng, C. W., Lin, C. C. and Leu, S. S., 2010, “Use of association rules to explore cause–effect relationships in occupational accidents in the Taiwan construction industry,” Safety Science, Vol. 48, No. 4, pp. 436-444.
11. Cho, V., 2003, “A comparison of three different approaches to tourist arrival forecasting,” Tourism Management, Vol. 24, No. 3, pp. 323-330.
12. Comrie, A. C., 1997, “Comparing Neural Networks and Regression Models for Ozone Forecasting,” Journal of the Air & Waste Management Association, Vol. 47, No. 6, pp. 653-663.
13. Cost, S. and Salzberg, S., 1993, “A weighted nearest neighbor algorithm for learning with symbolic features,” Machine Learning, Vol. 10, No. 1, pp. 57-78.
14. Delen, D., Walker, G. and Kadam, A., 2005, “Predicting breast cancer survivability: A comparison of three data mining methods,” Artificial Intelligence in Medicine, Vol. 34, No. 2, pp. 113-27.
15. Demsar J., 2006, “Statistical comparisons of classifiers over multiple data sets,” Journal of Machine Learning Research, Vol. 7, pp. 1-30.
16. Doniger, S., Hofmann, T. and Yeh, J., 2002, “Predicting CNS permeability of drug molecules: Comparison of neural network and support vector machine algorithms,” Journal of Computational Biology, Vol. 9, No. 6, pp. 849-864.
17. Garrett, D. Peterson, D. A. Anderson, C. W. and Thaut, M. H., 2003, “Comparison of linear, nonlinear, and feature selection methods for EEG signal classification,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 11, No. 2, pp. 141-144.
18. Goh, B. H., 1996, “Residential construction demand forecasting using economic indicators: A comparative study of artificial neural networks and multiple regression,” Construction Management and Economics, Vol. 14, No. 1, pp. 25-34.
19. Groenewald, J. W. D. and Aldrich, C., 2015, “Root cause analysis of process fault conditions on an industrial concentrator circuit by use of causality maps and extreme learning machines,” Minerals Engineering, Vol. 74, pp. 30-40.
20. Hallikas, J., Virolainen, V. and Tuominen, M., 2002, “Risk analysis and assessment in network environments: A dyadic case study,” International Journal of Production Economics, Vol. 78, No. 1, pp.45-55.
21. Hamzacebi, C., Akay, D. and Kutay, F., 2009, “Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting,” Expert Systems with Applications, Vol. 36, No. 2, pp. 3839-3844.
22. Huang, C. H., 2003, “Multiobjective service restoration of distribution systems using fuzzy cause-effect networks,” IEEE Transactions, Power Systems, Vol. 18, No. 2, pp. 867-874.
23. Huang, C. L., Chen, M. C. and Wang, C. J., 2007, “Credit scoring with a data mining approach based on support vector machines,” Expert Systems with Applications, Vol. 33, No. 4, pp. 847-856.
24. Karabadji, N. E. I., Seridi, H., Khelf, I., Azizi, N. and Boulkroune, R., 2014, “Improved decision tree construction based on attribute selection and data sampling for fault diagnosis in rotating machines,” Engineering Applications of Artificial Intelligence, Vol. 35, pp. 71-83.
25. Khoo, C. S. G., Kornfilt, J. Oddy, R. N. and Myaeng, S. H., 1998, “Automatic extraction of aause-effect information from newspaper text without knowledge-based inferencing,” Literary and Linguistic Computing, Vol. 13, No. 4, pp. 177-186.
26. Lavonas, E. J., Banner, W., Bradt, P., Bucher-Bartelson, B., Brown, K. R., Rajan, P., Murrelle, L., Dart, R. C. and Green, J. L., 2013, “Root causes, clinical effects, and outcomes of unintentional exposures to buprenorphine by young children,” The Journal of Pediatrics, Vol. 163, No. 5, pp. 1377-1383.
27. Lebowitz, M. and Burrows, B., 1977, “Quantitative relationships between cigarette smoking and chronic productive cough,” International Journal of Epidemiology, Vol. 6, No. 2, pp. 107-113.
28. Leea, J. and Umb, K., 2000, “A comparison in a back-bead prediction of gas metal arc welding using multiple regression analysis and artificial neural network,” Optics and Lasers in Engineering, Vol. 34, No. 3, pp. 149-158.
29. Lin, C. C., Lin, C. L. and Shyu, J. Z., 2014, “Hybrid multi-model forecasting system: A case study on display market,” Knowledge-Based Systems, Vol. 71, pp. 279-289.
30. Magariño, P. S., Heras, O. M., José, G. S. M. L. and Boger, Z., “Comparative study of artificial neural network and multivariate methods to classify Spanish DO rose wines,” Talanta, Vol. 62, No. 5, pp. 983-990.
31. McCarty, John A. and Hastak, M., 2007, “Segmentation approaches in data-mining: A comparison of RFM, CHAID, and logistic regression,” Journal of Business Research, Vol. 60, No. 6, pp. 656-662.
32. Mehdizadeh, B. and Movagharnejad, K., 2011, “A comparative study between LS-SVM method and semi empirical equations for modeling the solubility of different solutes in supercritical carbon dioxide,” Chemical Engineering Research and Design, Vol. 89, No. 11, pp. 2420-2427.
33. Meng, X. H., Huang Y. X., Rao, D. P., Zhang, Q. and Liu, Q., 2013, “Comparison of three data mining models for predicting diabetes or pre-diabetes by risk factors,” Kaohsiung Journal of Medical Sciences, Vol. 29, No. 2, pp. 93-99.
34. Mohammadi, R., Ghomi, F. S. M. T. and Zeinali, F., 2014, “A new hybride volutionary based RBF networks method for forecasting time series: A case study of forecasting emergency supply demand time series,” Engineering Applications of Artificial Intelligence, Vol. 36, pp. 204-214.
35. Moreu, G., Téllez, L. and González-Jaranay, M., 2005, “Relationship between maternal periodontal disease and low-birth-weight pre-term infants,” Journal of Clinical Periodontology, Vol. 32, No. 6, pp.622-627.
36. Mustaffa, Z., Yusof,Y. and Kamaruddinc, S. S., 2013, “Gasoline price forecasting: An application of LSSVM with improved ABC,” Procedia-Social and Behavioral Sciences, Vol. 129, pp. 601-609.
37. Nakajo, T. and Kume, H., 1991, “A case history analysis of software error cause-effect relationships,” IEEE Transactions, Software Engineering, Vol. 17, No. 8, pp. 830-838.
38. Nguyena, T., Malleyb, R., Inkelisc, S. H. and Kuppermannd, N., 2002, “Comparison of prediction models for adverse outcome in pediatric meningococcal disease using artificial neural network and logistic regression analyses,” Journal of Clinical Epidemiology, Vol. 55, No. 7, pp. 687-695.
39. Pai, T. Y., Chuang, S. H., Wan, T. J., Lo, H. M., Tsai, Y. P., Su, H. C., Yu, L. F., Hu, H. C. and Sung, P. J., 2008, “Comparisons of grey and neural network prediction of industrial park wastewater effluent using influent quality and online monitoring parameters,” Environmental Monitoring and Assessment, Vol. 146, No. 1-3, pp. 51-66.
40. Pandeya, G. R. and Nguyenb, V. T. V., 1999, “A comparative study of regression based methods in regional flood frequency analysis,” Journal of Hydrology, Vol. 225, No. 1-2, pp. 92-101.
41. Park, J., Nam, G. and Choi, J., 2011, “Parameters in cause and effect diagram for uncertainty evaluation,” Accreditation and Quality Assurance, Vol. 16, No. 6, pp. 325-326.
42. Phillips, J., Cripps, E., Lau, J. W. and Hodkiewicz, M. R., 2015, “Classifying machinery condition using oil samples and binary logistic regression,” Mechanical Systems and Signal Processing, Vol. 60-61, pp. 316-325.
43. Platt J. C., 1999, “Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods,” Advances in Large Margin Classifiers, pp. 61-74.
44. Rodriguez, R. R., Saiz, J. J. A. and Bas, A. O., 2009, “Quantitative relationships between key performance indicators for supporting decision-making processes,” Computers in Industry, Vol. 60, No. 2, pp. 104-113.
45. Saad, E. W., Prokhorov D. V. and Wunsch, D. C., 1998, “Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks,” IEEE Transactions on Neural Networks, Vol. 9, No. 6, pp. 1456-1470.
46. Salzberg, S. L., 1997 “On comparing classifiers: Pitfalls to avoid and a recommended approach,” Data Mining and Knowledge Discovery, Vol. 1, No. 3, pp. 317-328.
47. Shu, M. H., Cheng, C. H. and Chang, J. R., 2006, “Using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly,” Microelectronics Reliability, Vol. 46, No. 12, pp. 2139-2148.
48. Sorich, M. J., Miners, J. O., McKinnon, R. A., Winkler, D. A., Burden, F. R. and Smith, P. A., 2003, “Comparison of linear and nonlinear classification algorithms for the prediction of drug and chemical metabolism by human UDP-glucuronosyltransferase isoforms,” Journal of Chemical Information and Computer Sciences, Vol. 43, No. 6, pp. 2019-2024.
49. Thanassoulis, E., 1993, ”A comparison of regression analysis and data envelopment analysis as alternative methods for performance assessments,” The Journal of the Operational Research Society, Vol. 44, No. 11, pp.1129-1144.
50. Tiryaki, S., Özşahin, Ş. and Yıldırıma, İ., 2014, “Comparison of artificial neural network and multiple linear regression models to predict optimum bonding strength of heat treated woods,” International Journal of Adhesion & Adhesives, Vol. 55, pp. 29-36.
51. Tominaga, Y., 1999, “Comparative study of class data analysis with PCA-LDA, SIMCA, PLS, ANNs, and k-NN,” Chemometrics and Intelligent Laboratory Systems, Vol. 49, No. 1, pp. 105-115.
52. Toth, E. Brath, A. and Montanari A., 2000, “Comparison of short-term rainfall prediction models for real-time flood forecasting,” Journal of Hydrology, Vol. 239, No. 1-4, pp. 132-147.
53. Tsai, M. H., Lai, C. H., Lu, S. J. and Su, S. F., 2006, “Performance comparisons between unsupervised clustering techniques for microarray data analysis on ovarian cancer,” IEEE International Conference, Systems, Man and Cybernetics, Vol. 5, pp. 3685-3690.
54. Tsani, S., 2015, “On the relationship between resource funds, governance and institutions: Evidence from quantile regression analysis,” Resources Policy, Vol. 44, pp. 94-111.
55. Tseng, M. L. and Lin, Y. H., 2008,” Application of fuzzy DEMATEL to develop a cause and effect model of municipal solid waste management in Metro Manila,” Environmental Monitoring and Assessment, Vol. 158, No. 1-4, pp. 519-533.
56. Tso, G. K. F. and Yau, K. K. W., 2007, “Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks,” Energy, Vol. 32, No. 9, pp. 1761-1768.
57. Verikas, A., Lipnickas, A., Malmqvist, K., Bacauskiene, M. and Gelzinis, A., 1999, “Soft combination of neural classifiers: A comparative study,” Pattern Recognition Letters, Vol. 20, No. 4, pp. 429-444.
58. Yao, X. J., Panaye, A., Doucet, J. P., Chen, H. F., Zhang, R. S., Fan, B. T., Liu, M. C. and Hu, Z. D., 2005, “Comparative classification study of toxicity mechanisms using support vector machines and radial basis function neural networks,” Analytica Chimica Acta, Vol. 535, No. 1-2, pp. 259-273.
59. Yilmaz, I., 2009, “Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional probability, logistic regression, artificial neural networks, and support vector machine,” Environmental Earth Sciences, Vol. 61, No. 4, pp. 821-836.
60. Zou, H. F., Xia, G. P., Yang, F. T. and Wang, H. Y., 2007, “An investigation and comparison of artificial neural network and time series models for Chinese food grain price forecasting,” Neurocomputing, Vol. 70, No. 16-18, pp. 2913-2923.