簡易檢索 / 詳目顯示

研究生: 謝孟諺
Meng-Yen Hsieh
論文名稱: 微液滴傳送機制之理論辨正
Theory modification of droplet transport mechanism
指導教授: 饒達仁
Da-Jeng Yao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 72
中文關鍵詞: 介電質材料上的電濕潤效應介電質電泳效應介電質疏水性接觸角頻率
外文關鍵詞: Electrowetting on dielectrics, Dielectrophoretic, dielectric, hydrophobic, contact angle, frequency
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微液滴傳送技術是不需要微流道便可控制流體的新技術,具有製程簡便、微量控制、混合容易、成本低廉等優點。由於其裝置架構同時滿足兩種會對液體產生作用力的物理現象:介電質材料上的電濕潤效應(Electrowetting on dielectrics, EWOD)、及介電質電泳效應 (Dielectrophoretic effect, DEP),本文主要是設計實驗去確認是何種效應造成液體移動的現象。以Pellat的雙電極板實驗為架構,我們發現在供應直流電(DC)時,造成液面上升的高度與介電質材料上的電濕潤效應所預期的相符。T. B. Jones的團隊在使用交流電(AC)的實驗中,發現頻率將影響液面上升高度的大小。經由電路分析,了解頻率如何影響電壓的分佈,進而影響驅動液體的理論機制與作用力大小。最後並探討ㄧ些重要參數對實驗的影響,如何設計ㄧ個微液滴傳送裝置能夠達到較好的效果。


    Droplet transport technology is a new technology which doesn’t need channels to control fluids. It has some advantages, such as simple fabrication, minute volume controlling, easy mix, low cost, and so on. Its device satisfied two physical phenomena which affects fluids: electrowetting on dielectrics (EWOD), and dielectrophoretic effect (DEP). We design an experiment to identify the phenomenon which makes the droplet moving. By using Pellat’s two parallel electrodes experiment model, our experiment shows when we used DC power, the height of liquid-air interface is the same as expectancy of EWOD phenomenon. T. B. Jones’ group discovered when used AC power, frequency would influence the height of liquid-air interface. To analyze the circuit, we know how frequency effect the distribution of voltage, and partial voltage affect physical phenomena and the force. At last, we discuss the influences of some important parameters to design a better microfluidic transport device.

    第一章 緒論___________________________________________________1 1.1 研究動機________________________________________________1 1.2 主要貢獻________________________________________________2 1.3 本文架構________________________________________________2 第二章 文獻回顧_______________________________________________4 2.1 利用介電質材料上的電濕潤效應驅動微液滴__________________4 2.2 表面粗糙度驅動微液滴____________________________________6 2.3 利用光控制電濕潤效應開關________________________________8 2.4 利用介電質電泳效應驅動液體_____________________________10 第三章 理論推導______________________________________________12 3.1 介電質材料上的電濕潤效應(EWOD)________________________12 3.1.1李普曼( Lippmann )方程式_____________________________13 3.1.2 接觸角變化與液滴移動_______________________________18 3.2 介電質電泳效應(DEP)____________________________________21 第四章 實驗方法與架構________________________________________27 4.1 實驗方法_______________________________________________27 4.1.1 介電質材料上的電濕潤效應(EWOD)的情況______________28 4.1.2 接觸角飽和現象_____________________________________29 4.1.3 介電質電泳效應(DEP)的情況__________________________31 4.1.4 辨別方式___________________________________________32 4.2 實驗裝置之整體架構_____________________________________33 4.2.1 電極板試片之製作___________________________________35 4.2.2 接觸角飽和現象的實驗_______________________________37 4.2.3 實驗器材的架設_____________________________________38 第五章 實驗結果與分析________________________________________42 5.1 接觸角飽和實驗結果_____________________________________42 5.2 雙電極板液面上升實驗結果_______________________________44 5.3 Thomas B. Jones團隊在AC實驗之發現_____________________46 5.4 理論辨正與實驗結果分析_________________________________50 5.5 各項重要參數的影響_____________________________________53 5.5.1 液體電導對電壓分佈的影響___________________________55 5.5.2 液體電容對電壓分佈的影響___________________________57 5.5.3 介電層電容對電壓分佈的影響_________________________59 5.6 各項變因對液面上升影響之實驗___________________________62 5.6.1 液體電導率對液面上升影響之實驗_____________________62 5.6.2 電極板之間距對液面上升影響之實驗___________________64 5.6.3 介電層之厚度對液面上升影響之實驗___________________65 第六章 結論與展望____________________________________________68 6.1 結論___________________________________________________68 6.2 未完成工作_____________________________________________69 6.3 未來展望_______________________________________________69 參考文獻______________________________________________________70

    [1] J. Lee, and C.-J. Kim, “Surface Tension Driven Microactuation Based on Continuous Electrowetting (CEW)” ,Journal of Microelectromechanical Systems, Vol. 9, No. 2, Jun. 2000, pp. 171-180.

    [2] S. K. Cho, H. Moon, J. Fowler, S.-K. Fan, and C.-J. Kim, “Splitting a Liquid Droplet for Electrowetting-Based Microfluidics”, Int. Mechanical Engineering Congress and Exposition, New York, NY, Nov. 2001, IMECE2001/MEMS-23831

    [3] H. Moon, S. K. Cho, R. L. Garrell, and C.-J. Kim, “Low Voltage electrowetting-on-dielectric”, Journal of Applied Physics, Vol. 92, No. 7, pp. 4080-4087, 2002.

    [4] S. K. Cho, S.-K. Fan, H. Moon, and C.-J Kim, “Toward Digital Microfluidic Circuits: Creating, Transporting, Cutting and Merging Liquid Droplets by Electrowetting-Based Actuation”, IEEE Conf. MEMS, Las Vegas, NV, Jan. 2002, pp. 32-52.

    [5] Sung Kwon Cho, Hyejin Moon, and Chang-Jin Kim, "Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits" Journal of Microelectromechanical Systems, VOL. 12, NO. 1, Feb. 2003, pp. 70-80.

    [6] Bo He, Junghoon Lee, “Dynamic wettability switching by surface roughness effect”, Micro Electro Mechanical Systems, 2003, pp.120-123

    [7] P. Y. Chiou, M. Wu, H. Moon, C.-J. Kim, and H. Toshiyoshi, ”Optical Actuation of Microfluidics Based on Opto-Electrowetting” Hilton Head 2002, pp. 134-137

    [8] Pei Yu Chiou; Zehao Chang; Wu, M.C., “Light Actuated Microfluidic Devices “Micro Electro Mechanical Systems, 2003, 355-358

    [9] Pei Yu Chiou, Hyejin Moon, Hiroshi Toshiyoshi, Chang-Jin Kim, Ming C. Wu, “Light actuation of liquid by optoelectrowetting" Sensors and Actuators A, 2003, Vol. 104, pp. 222-228

    [10] T. B. Jones, M. Gunji, M. Washizu, M. J. Feldman "Dielectrophoretic liquid actuation and nanodroplet formation," Journal of Applied Physics, vol. 89, pp. 1441-1448, 15 January, 2001

    [11] Crow著 黃進益譯, 電化學的原理與應用, 高立圖書有限公司.

    [12] 姚允斌, 裘祖楠著, 膠體與表面化學導論, 天津巿/南開大學/1988

    [13] Jaycock, M. J., Chemistry of interfaces, Chichester, Eng./E. Horwood/1981

    [14] J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C.-J. Kim, “Electrowetting and electrowetting-on-dielectric for microscale liquid handling”, Sensors and Actuators, Vol. A95, pp. 259-268, 2002.

    [15] http://www.dielectrophoresis.org/PagesMain/DEP.htm

    [16] David J. Griffiths, Introduction to electrodynamics, third edition, Prentice Hall, 1999

    [17] T. B. Jones, "On the relationship of dielectrophoresis and electrowetting," Langmuir, vol. 18, pp. 4437- 4443, 2002.

    [18] Benjamin Shapiro, Hyejin Moon, Robin Garrell, and Chang-Jin "CJ" Kim, "Modeling of Electrowetted Surface Tension for Addressable Microfluidic Systems: Dominant Physical Effects, Material Dependences, and Limiting Phenomena" IEEE Conf. MEMS, Kyoto, Japan, Jan. 2003, pp. 201-205.

    [19] K. H. Kang, “How Electrostatic Fields Change Contact Angle in Electrowetting”, Langmuir; (Article); 2002; 18(26); 10318-10322.

    [20] V. Peykov, A. Quinn, J. Ralston, “Electrowetting: a model for contact-angle saturation”, Colloid and polymer science, 278: 789-793, 2000

    [21] Verheijen, H. J. J. ; Prins, M. W. J., “Reversible Electrowetting and Trapping of Charge: Model and Experiments”, Langmuir; (Communication); 1999; 15(20); 6616-6620.

    [22] T. B. Jones, J. D. Fowler, Y. S. Chang, and C.-J. Kim, “Frequency-Based Relationship of Electrowetting and Dielectrophoretic Liquid Microactuation” Langmuir, Vol. 19, No. 18, 2003, pp. 7646-7651.

    [23] T. B. Jones, K.-L. Wang, D.-J. Yao, "Frequency-dependent electromechanics of aqueous liquids: electrowetting and dielectrophoresis," Langmuir, vol. 20, pp. 2813-2818, 2004

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE