研究生: |
周思妤 Chou, Si Yu |
---|---|
論文名稱: |
利用人工勢場法於自走車動態避障之實現 The Implementation of a Dynamic Obstacle Avoidance System for a Mobile Robot Using Artificial Potential Field |
指導教授: |
陳建祥
Chen, Jian Shiang |
口試委員: |
戴滄禮
Tai, Tsang Li 葉廷仁 Yeh, Ting Jen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 人工勢場法 、輪型機器人 、動態避障 、無線能量傳輸 、Class-E 功率放大器 |
外文關鍵詞: | Artificial Potential Field Method, Wheeled robot, Dynamic Obstacle Avoidance, Wireless power transfer, Class-E Power Amplifier |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以人工勢場法做為輪型機器人的避障策略,以微控制器作為控制性統的核心,藉由雷射測距儀來擷取環境資訊,透過輪型機器人將避障策略實現。
人工勢場法為將輪型機器人、障礙物及目標點座標建立虛擬能量場函數,其中目標點產生引力場,障礙物則產生斥力場,在合力場中由高勢能往低勢能移動,以此機制決定機器人的移動路徑與速度,以達到避開障礙物並抵達目標點。然而人工勢場法仍有缺陷,原因之一便是對於動態障礙物在進行避障時,可會因為旋轉角度不夠大或是輪型機器人移動速度太慢而導致無法順利避開障礙物。
針對此問題本文改良斥力場;將動態障礙物與機器人的相對移動速度考慮進去,使得機器人能順利避開移動中的障礙物,由此解決人工勢場法對於動態避障的不足。實驗中機器人利用改良過後的人工勢場法可以順利避開動態障礙物並到達目標點,最後藉由判斷U字形車庫特徵使機器人停放於車庫內。
另外本文利用Class-E功率放大器實現無線充電,Class-E電路目的是將MOSFET的開關操作在零電壓(Zero Voltage Switching, ZVS)狀態,以減少轉換器在開關切換時所造成能量的損失,而實現其電路的方式則是利用電感與電容的諧振來完成。採用石英振盪器來完成控制MOSFET開關的頻率,藉以簡化複雜的開關訊號電路。而共振槽(resonant tank)則是利用共振電容與共振電感來形成,藉此達到能量的傳輸。
This thesis applied artificial potential field to avoid obstacles for wheeled mobile robot. This system implements by using microcontroller and a laser range finder to obtain environment information.
The artificial potential field approach constructs a virtual potential field for robot, obstacles and target. It introduces an attractive potential field at target and a repulsive potential field at obstacle to determine the moving path and speed for the mobile robot moving to target without collision. However, there are some defects, when avoiding moving-obstacles, the mobile robot may cause collisions due to small rotation angle or slow moving speed.
As the solution, this thesis improves the repulsive potential field, having relative speed between obstacles and the mobile robot into consideration, to make robot avoid obstacles smoothly. In the experiment, the mobile robot can avoid obstacles and make to the target, then park in the garage by identifying the feature of U-garage.
In addition, we use Class-E power amplifier to realize wireless power transfer. The purpose of Class-E circuit is making the switch of MOSFET in the state of “Zero-Voltage Switching, ZVS”, in order to reduce the power loss when switching, we implement the circuit by the resonance between inductors and capacitors. Use quartz oscillator to control the frequency of MOSFET switch, and simplify the switching circuit. Besides, the resonant tank is combined with resonance capacitor and resonance inductor to transfer the power.
[1] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” International Journal of Robotics Research, Vol. 5, No. 1, pp. 90-98, 1986.
[2] Y. Koren and J. Borenstein, “Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation,” IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1398-1404, 1991.
[3] S. S. Ge and Y. J. Cui, “New potential functions for mobile robot path planning,” IEEE Transactions on Robotics and Automation, Vol. 16, No. 5, pp. 615-620, 2000.
[4] S. S. Ge and Y. J. Cui, “Dynamic Motion Planning for Mobile Robots Using Potential Field Method,” Autonomous Robots, Vol. 13, pp. 207-222, 2002.
[5] L. Tang, S. Dian, G. Gu, K. Zhou, S. Wang, X. Feng, “A Novel Potential Field Method for Obstacle Avoidance and Path Planning of Mobile Robot,” Computer Science and Information Technology (ICCSIT), IEEE International Conference on , Vol. 9, pp. 633-637, 2010.
[6] Q. Li, L. Wang, B. Chen, Z. Zhou, “An Improved Artificial Potential Field Method for Solving Local Minimum Problem,” IEEE International Conference on Control and Information Processing, Vol. 1, pp. 420-424, 2011.
[7] C. Liu, H.A. Jr. Marcelo, K. Hariharan, S.Y. Lim, “Virtual Obstacle Concept for Local-minimum-recovery in Potential-field Based Navigation,” IEEE International Conference on Robotics and Automation, Vol. 2, pp. 983-988, 2000.
[8] R. Vázquez-Martín, P. Núňez, A. Bandera, F Sandoval, “Curvature-Based Environment Description for Robot Navigation Using Laser Range Sensors,” Sensors, Vol. 9, No. 8, pp. 5894-5918,2009
[9] M. K. Zhang and L. S. Li, “A Method for Solving the Local Minimization Problem of Artificial Potential Field,” Computer Technology and Development, Vol. 17, No. 5, pp. 137-139, 2007.
[10] A. Bandera, C. Urdiales, F. Arrebola and F. Sandoval, “Corner detection by means of adaptively estimated curvature function,” Electronics Letters, Vol. 36, No. 2, pp. 124-126, 2000.
[11] Ming Wu and Jian-Shiang Chen, “The Design of Chattering Alleviated Sliding Mode Control Using Wavelet Approach,” International Automatic Control Coference, 2013.
[12] W. Chen, R. A. Chinga, S. Yoshida, J. Lin, C. Chen and W. Lo, “A 25.6 W 13.56 MHz Wireless Power Transfer System with a 94% Efficiency GaN Class-E Power Amplifier” Microwave Symposium Digest (MTT), 2012 IEEE MTT-S International, pp. 1-3, 2012.
[13] Marian K. Kazimierczuk and Dariusz czarkowski, Resonant Power Converter. A Willey-Interscience Publication, 2001, pp. 347-378.
[14] F. Stubenrauch, N. Seliger, M. Schustek, A. Lebedev “A 13.56MHz class E power amplifier for inductively coupled DC supply with 95% Power Added Efficiency (PAE)” 2015 International EURASIP Workshop on RFID Technology (EURFID)
[15] O.H. Stielau and G.A. Covic. Design of loosely coupled inductive power transfer systems. In Power System Technology, 2000. Proceedings. PowerCon 2000. International Conference on, volume 1, pages 85–90 vol.1, 2000.
[16] Wei-Min Lai,“An RSSI-Assisted Vision Navigation Strategy for an Autonomous Cross-Floor Stair-Climbing Robot”, National Sun Yat-sen University, Department of Mechanical Engineering, 2000
[17] Wen, Chih-Kai, “Combining RFID and 2-D SLR on the Collision Avoidance and Tracking of a Mobile Robot”, National Tsing Hua University, Department of Power Mechanical Engineering, 2011.
[18] Yang, Chen-Ning, “On the Implementation of Collision Avoidance of a Wheeled-robot using Artificial Potential Field Approach”, National Tsing Hua University, Department of Power Mechanical Engineering, 2012.
[19] Liang, Li-Bo, “The Implementation of an Obstacle Avoidance System for a Mobile Robot Using Microcontrollers”, National Tsing Hua University, Department of Power Mechanical Engineering, 2014.
[20] Wu, Tzu Chun, “Toward the Collision Avoidance of an Autonomous Robot and Wireless Power Transfer”, National Tsing Hua University, Department of Power Mechanical Engineering, 2015.
[21] Tso-Sheng Chan, Chern-Lin Chen, “Analysis and Design of Wireless Transcutaneous Energy Transmission System”, Department of Electrical Engineering and Graduate Institute of Electronics Engineering National Taiwan University.
[22] http://robots.mobilerobots.com/ Pioneer 3 Operations Manual
[23] http://www.hokuyo-aut.jp/ Scanning range finderURG-04LX information
[24] http://www.microchip.com/ dsPIC33FJ128MC804 Data Sheet
[25] http://www.pittman-motors.com/ Pittman DC Motor SPEC PAGE
[26] http://www.st.com/web/en/home.html VNH2SP30-E Data Sheet
[27] http://witricity.com/technology/witricity-the-basics/ Witricity-The-Basics
[28] https://en.wikipedia.org/wiki/Wi31reless_power_transfer Wireless power transfer
[29] https://www.vishay.com/docs/91015/sihf510.pdf IRF510 IRF510 Datasheet