研究生: |
林家德 Lin, Chia-Te |
---|---|
論文名稱: |
利用具空間及時間解析能力的螢光溫度計偵測金奈米棒溶液之光熱過程 Spatially and temporally-resolved tryptophan fluorescence thermometry for monitoring the photothermal processes of gold nanorod suspensions |
指導教授: |
朱立岡
Chu, Li-Kang |
口試委員: |
陳仁焜
Chen, Jen-Kun 劉靜萍 Liu, Ching-Ping |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 56 |
中文關鍵詞: | 金奈米棒 、色胺酸 、共軛焦螢光溫度計 、光熱效應 |
外文關鍵詞: | gold nanorod, tryptophan, confocal fluorescence thermometry, photothermal effect |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金奈米棒的長軸表面電漿共振吸收波長可至近紅外光,此波長對生物組織有較深的穿透深度,且金奈米棒能有效地吸收紅外光能並轉換為熱能釋出,故廣泛應用於光熱治療中。在過去的研究中,常藉由偵測老鼠皮膚表面溫度變化,推算金奈米棒的治療功效,卻無法得知組織內部實際的溫度變化。而以往常使用熱電偶式溫度計及瞬態熱線法等接觸式方法,來測量金奈米粒子溶液受光激發後的溫度變化,但若使用這類感測器,需穿進組織內進行量測且容易造成微擾。因此本研究將建立一套具有空間及時間解析能力的非接觸式螢光溫度計,量測金奈米棒溶液受雷射加熱後,於空間及時間中的溫度演進。
吾人以1064 nm連續式雷射(47.6 Watt cm–2)激發金奈米棒,並以色胺酸作為螢光溫度計,偵測金奈米棒光熱效應造成的溫度變化。當環境溫度上升1 ℃,色胺酸螢光強度減弱1.94 %。搭配共軛焦顯微技術偵測不同位置溫度隨時間的變化,其空間解析度為50 μm,偵測極限可達一秒內之溫度變化0.3 ℃,另外以紅外線熱像儀偵測石英槽表面溫度隨時間的變化。吾人觀察金奈米棒吸收1064 nm紅外光後,釋放熱能至環境中,由雷射加熱中心向外傳遞至石英槽外壁,溫度逐漸下降,且中心至外壁僅距離2.5 mm,但兩處溫度變化差距約4 ℃。藉由吾人所建立具備空間及時間解析能力的螢光溫度計,得偵測微小體積溶液內不同位置的溫度演進,可應用於建立光熱治療組織內部溫度演進的模型。
Gold nanorods are widely used in biological applications because the longitudinal plasmonic band lies in the near infrared region, which has a greater penetration depth in tissues. Generally, the photothermal efficiency of gold nanorods in cancer treatment can be revealed by temperature increases measured by a thermograph on the skin surface of the mice. However, such changes could be underestimated and spatially broadened as compared to those in tissues due to thermal conduction. As to the measuring methods, thermocouples and the transient hot wire method have been employed to illustrate the temperature evolution and thermal conduction. However, these contact methods are impractical for biological sensing due to the unavoidable penetration of the tissues. Therefore, I constructed a temporally and spatially-resolved confocal fluorescent thermometer using tryptophan as the fluorophore to illustrate the temperature evolution in gold nanorod suspensions.
The photoexcitation of gold nanorod suspensions with continuous infrared laser (47.6 Watt cm–2) leads to the gradual increase in the temperature which can be monitored with the fluorescent thermometer using tryptophan as the fluorophore. The confocal configuration provides the spatial resolution about 50 μm for illustrating the temperature evolution of the heating volume. In addition, a complementary infrared imaging using infrared thermal camera was employed to track the temperature evolution of the quartz cuvette surface. The thermal progression in the heating volume and cuvette surface can be linked through the analysis by simple thermal conduction and diffusion, providing the practical temperature estimation of the inner thermal phenomenon by analyzing the temperature evolution of the surface.
第一章
[1] Petryayeva, E.; Krull, U. J. Anal. Chim. Acta 2011, 706, 8-24.
[2] Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 4212-4217.
[3] Eustis, S.; El-Sayed, M. A. Chem. Soc. Rev. 2006, 35, 209-217.
[4] Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Marzán L. M.; Javier García de Abajo, F. Chem. Soc. Rew. 2008, 37, 1792-1805.
[5] Ghosh, S. K.; Pal, T. Chem. Rev. 2007, 107, 4797-4862.
[6] Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668-677.
[7] Daniel, M.-C.; Astruc, D. Chem. Rev. 2004, 104, 293-346.
[8] Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. J. Phys. Chem. B 2006, 110, 7238-7248.
[9] Underwood, S.; Mulvaney, P. Langmuir 1994, 10, 3427-3430.
[10] Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Coord.
Chem. Rev. 2005, 249, 1870-1901.
[11] Cao, J.; Sun, T.; Grattan, K. T. V. Sens. Actuators. B 2014, 195, 332-351.
[12] Govorov, A. O.; Richardson, H. H. Nano Today 2007, 2, 30-38.
[13] Govorov, A. O.; Zhang, W.; Skeini, T.; Richardson, H.; Lee, J.; Kotov, N. A. Nanoscale Res. Lett. 2006, 1, 84-90.
[14] Voisin, C.; Christofilos, D.; Del Fatti, N.; Vallée, F.; Prével, B.; Cottancin, E.; Lermé, J.; Pellarin, M.; Broyer, M. Phys. Rev. Lett. 2000, 85, 2200-2203.
[15] O’Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L. Cancer Lett. 2004, 209, 171-176.
[16] Hogan, N. J.; Urban, A. S.; Ayala-Orozco, C.; Pimpinelli, A.; Nordlander, P.; Halas, N. J. Nano Lett. 2014, 14, 4640-4645.
[17] Richardson, H. H.; Hickman, Z. N.; Govorov, A. O.; Thomas, A. C.; Zhang, W.; Kordesch, M. E. Nano Lett. 2006, 6, 783-788.
[18] Bendix, P. M.; Reihani, S. N. S.; Oddershede, L. B. Acs Nano 2010, 4, 2256-2262.
[19] Richardson, H. H.; Carlson, M. T.; Tandler, P. J.; Hernandez, P.; Govorov, A. O. Nano Lett. 2009, 9, 1139-1146.
[20] Jiang, K.; Smith, D. A.; Pinchuk, A. J. Phys. Chem. C 2013, 117, 27073-27080.
[21] Smith, J. D.; Cappa, C. D.; Drisdell, W. S.; Cohen, R. C.; Saykally, R. J. J. Am. Chem. Soc. 2006, 128, 12892-12898.
[22] Fischer, L. H.; Harms, G. S.; Wolfbeis, O. S. Angew. Chem. Int. Ed. 2011, 50, 4546-4551.
[23] Walker, G. W.; Sundar, V. C.; Rudzinski, C. M.; Wun, A. W.; Bawendi, M. G.; Nocera, D. G. Appl. Phys. Lett. 2003, 83, 3555-3557.
[24] Shanmugam, V.; Selvakumar, S.; Yeh, C.-S. Chem. Soc. Rev. 2014, 43, 6254-6287.
[25] Boriskina, S. V.; Ghasemi, H.; Chen, G. Mater. Today 2013, 16, 375-386.
[26] Smith, A. M.; Mancini, M. C.; Nie, S. Nat. Nanotechnol. 2009, 4, 710-711.
[27] Crut, A.; Maioli, P.; Del Fatti, N.; Vallée, F. Chem. Soc. Rev. 2014, 43, 3921-3956.
[28] Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. J. Am. Chem. Soc. 2006, 128, 2115-2120.
[29] Zhou, W.; Shao, J.; Jin, Q.; Wei, Q.; Tang, J.; Ji, J. Chem. Commun. 2010, 46, 1479-1481.
[30] Oladipo, A. O.; Oluwafemi, O. S.; Songca, S. P.; Sukhbaatar, A.; Mori, S.; Okajima, J.; Komiya, A.; Maruyama, S.; Kodama, T. Sci. Rep. 2017, 7, 45459.
[31] Liu, J.; Detrembleur, C.; De Pauw-Gillet, M.-C.; Mornet, S.; Jérôme, C.; Duguet, E. Small 2015, 11, 2323-2332.
[32] Das, S. K.; Putra, N.; Thiesen, P.; Roetzel, W. J. Heat Trans. 2003, 125, 567-574.
[33] Kleinstreuer, C.; Feng, Y. Nanoscale Res. Lett. 2011, 6, 229.
[34] Fan, J.; Wang, L. J. Heat Trans. 2011, 133, 040801.
[35] Tertsinidou, G. J.; Tsolakidou, C. M.; Pantzali, M.; Assael, M. J. J. Chem. Eng. Data 2017, 62, 491-507.
[36] von Maltzahn, G.; Park, J.-H.; Agrawal, A.; Bandaru, N. K.; Das, S. K.; Sailor, M. J.; Bhatia, S. N. Cancer Res. 2009, 69, 3892-3900.
[37] Lei, M.; Ma, M.; Pang, X.; Tan, F.; Li, N. Nanoscale 2015, 7, 15999-16011.
第二章
[1] Petryayeva, E.; Krull, U. J. Anal. Chim. Acta 2011, 706, 8-24.
[2] Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 4212-4217.
[3] Eustis, S.; El-Sayed, M. A. Chem. Soc. Rev. 2006, 35, 209-217.
[4] Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Marzán L. M.; Javier García de Abajo, F. Chem. Soc. Rev. 2008, 37, 1792-1805.
[5] Ghosh, S. K.; Pal, T. Chem. Rev. 2007, 107, 4797-4862.
[6] Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668-677.
[7] Daniel, M.-C.; Astruc, D. Chem. Rev. 2004, 104, 293-346.
[8] Mie, G. Ann. Phys. 1908, 330, 377-445.
[9] Cao, J.; Sun, T.; Grattan, K. T. V. Sens. Actuators, B 2014, 195, 332-351.
[10] R. Gans, Ann. Phys. 1912, 342, 881-900.
[11] Hu, M.; Chen, J.; Li, Z.-Y.; Au, L.; Hartland, G. V.; Li, X.; Marquez, M.; Xia, Y. Chem. Soc. Rev. 2006, 35, 1084-1094.
[12] Link, S.; Mohamed, M. B.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 3073-3077.
[13] Hu, M.; Hartland, G. V. J. Phys. Chem. B 2002, 106, 7029-7033.
[14] Huang, W.; Qian, W.; El-Sayed, M. A. J. Phys. Chem. C 2007, 111, 10751-10757.
[15] Ekici, O.; Harrision, R. K.; Durr, N. J.; Eversole, D. S. E.; Lee, M.; Ben-Yakar, A. J. Phys. D: Appl. Phys. 2008, 41, 185501.
[16] Bauer, C.; Abid, J.-P.; Fermin, D.; Girault, H. H. J. Chem. Phys. 2004, 120, 9302-9315.
[17] Sun, C.-K.; Vallée F.; Acioli, L. H.;Ippen, E. P.; Fujimoto, J. G. Phys. Rev. B 1994, 50, 15337-15348.
[18] Link, S.; Burda, C.; Wang, Z. L.; El-Sayed, M. A. J. Chem. Phys. 1999, 111, 1255-1264.
[19] Werner, D.; Furube, A.; Okamoto, T.; Hashimoto, S. J. Phys. Chem. C 2011, 115, 8503-8512.
[20] Werner, D.; Hashimoto, S. J. Phys. Chem. C 2011, 115, 5063-5072.
[21] Lakowicz, J. R. Principles of Fluorescence Spectroscopy. Springer 2006.
[22] Edelhoch, H. Biochemistry 1967, 6, 1948-1954.
[23] Royer, C. A. Chem. Rev. 2006, 106, 1769-1784.
[24] Stevenson, K. L.; Papadantonakis, G. A.; LeBreton, P. R. J. Photochem. Photobiol. A. Chem. 2000, 133, 159-167.
[25] Sherin, P. S.; Snytnikova, O. A.; Tsentalovich, Y. P. Chem. Phys. Lett. 2004, 391. 44-49.
[26] Tsentalovich, Y. P.; Snytnikova, O. A.; Sagdeev, R. Z. J. Photochem. Photobiol. A Chem. 2004, 162, 371-379.
[27] Eisinger, J.; Navon, G. J. Chem. Phys. 1969, 50, 2069-2077.
[28] Bent, D. V.; Hayon, E. J. Am. Chem. Soc. 1975, 97, 2612-2619.
[29] Robbins, R, J,; Fleming, G. R.; Beddard, G. S.; Robinson, G. W.; Thistlethwaite, P. J.; Woolfe, G. J. J. Am. Chem. Soc. 1980, 102, 6271-6279.
[30] Sherin, P. S.; Snytnikova, O. A.; Tsentalovich, Y. P. J. Chem. Phys. 2006, 125, 144511.
[31] Feitelson, J. Photochem. Photobiol. 1971, 13, 87-96.
[32] Gally, J. A.; Edelman, G. M. Biochim. Biophys. Acta 1962, 60, 499-509.
[33] Chiu, M.-J.; Chu, L.-K. Phys. Chem. Chem. Phys. 2015, 17, 17090-17100.
第三章
[1] 洪嘉駿 紫外-可見光譜學. 科學Online 科技部高瞻自然科教學資源平台 2014.
[2] Faust, C. B. Modern Chemical Techniques: An Essential Reference for Student and Teacher.; Royal Society of Chemistry: 1992.
[3] Skoog, D. A.; Leary, J. J. Principles of Instrumental Analysis.; Thomson Brooks/Cole: 2007.
[4] 羅聖全 研發奈米科技的基本工具之一 電子顯微鏡介紹—TEM. 小奈米大世界
[5] 陳建淼; 洪連輝 穿透式電子顯微鏡. 科學Online 科技部高瞻自然科學教學資源平台 2009.
[6] 林昆霖 肉眼看不見的奈米級材料及元件檢測分析就靠穿透式電子顯微鏡. 奈米通訊Nano communication 2003, 20, 34 ̶ 38.
[7] Kubelka, J. Photochem. Photobiol. Sci. 2009, 8, 499-512
[8] Czymmek, K. J.; Whallon, J. H.; and Klomparens, K. L. Fungal Genet. Biol., 1994, 18, 275-293.
[9] Gally, J. A.; Edelman, G. M. Biochim. Biophys. Acta 1962, 60, 499-509.
[10] Chiu, M.-J.; Chu, L.-K. Phys. Chem. Chem. Phys. 2015, 17, 17090.
[11] Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, F. G. Sensors. 2014, 14, 12305-12348.
[12] Vigderman, L.; Zubarev, E. R. Chem. Mater. 2013, 25, 1450-1457.
第四章
[1] Ye, T.; Dai, Z.; Mei, F.; Zhang, X.; Zhou, Y.; Xu, J.; Wu, W.; Xiao, X.; Jiang, C. J. Phys.: Condens. Matter. 2016, 28, 434002.
[2] Zhan, Q.; Qian, J.; Li, X.; He, S. Nanotechnology. 2010, 21, 055704.
[3] Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Coord. Chem. Rev. 2005, 249, 1870-1901.
[4] Vigderman, L.; Zubarev, E. R. Chem. Mater. 2013, 25, 1450-1457.
[5] Gally, J. A.; Edelman, G. M. Biochim. Biophys. Acta 1962, 60, 499-509.
[6] Chiu, M.-J.; Chu, L.-K. Phys. Chem. Chem. Phys. 2015, 17, 17090.
[7] Combis, P.; Cormont, P.; Gallais, L.; Hebert, D.; Robin, L.; Rullier, J.-L. Appl. Phys. Lett., 2012, 101, 211908.
[8] Ramires, M. L. V.; de Castro, C. A. N.; Nagasaka, Y.; Nagashima, A.; Assael, M. J.; Wakeham, W. A. J. Phys. Chem. Ref. Data, 1995, 24, 1377-1381.
[9] von Maltzahn, G.; Park, J.-H.; Agrawal, A.; Bandaru, N. K.; Das, S. K.; Sailor, M. J.; Bhatia, S. N. Cancer Res., 2009, 69, 3892-3900.
[10] Lei, M.; Ma, M.; Pang, X.; Tan, F.; Li, N. Nanoscale, 2015, 7, 15999-16011.
[11] Yi, D. K.; Sun, I.-C.; Ryu, J. H.; Koo, H.; Park, C. W.; Youn, I.-C.; Choi, K.; Kwon, I. C.; Kim, K.; Ahn, C.-H. Bioconjugate Chem. 2010, 21, 2173-2177.