研究生: |
周耕宇 Keng-Yu Chou |
---|---|
論文名稱: |
橫向式超接面閘流體過壓保護元件的設計與研究 The Design and Research of Lateral Super-Junction Thyristor Surge Protective Device |
指導教授: |
龔正
Jeng Gong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 矽控整流器 、橫向式閘流體 、閘流體過壓保護元件 、超接面 、埋藏層 、崩潰電壓 |
外文關鍵詞: | SCR, Lateral Thyristor, TSPD, Super junction, Buried layer, Breakdown voltage |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現代深次微米尺寸的積體電路產品中,電晶體元件對突波和靜電放電變得非常敏感。矽控整流器(SCR)在突波放電的保護元件中,具有很好的突波放電防護能力,應用在晶片上也有一段很長的時間。
一般功率元件為了高電壓的應用,通常必須降低漂移區的摻雜濃度與增加其長度,相對的增加了導通電阻(Ron),傳統的閘流體過壓保護元件(TSPDs, Thyristor Surge Protective Devices)也免不了如此的設計,使得元件的額定電流受到限制。近幾年來,CoolMOSFET搭配超接面(Super-junction)結構,使其在相同崩潰電壓下導通電阻能比一般功率元件低很多。
本論文中,我們將傳統垂直式的閘流體改為橫向式結構,並依據超接面理論與閘流體做結合。使用三維模擬軟體進行元件的電性分析,研究結果顯示超接面使電場分佈較為平坦化,可有效提升元件的崩潰電壓。如果能加入深埋藏層的結構,有Double RESURF的效果能使崩潰電壓超過1000V以上。
根據上述,我們利用光罩和實際製程,嘗試設計出一個額定電壓為600V的橫向式超接面閘流體過壓保護元件(Lateral Super-junction TSPD)。
[1] J. L. Moll, M. Tanenbaum, J. M. Goldey, and N. Holonyak, Jr., “p-n-p-n transistor switches, ” Proc. IRE, vol.44, p. 1174, 1956.
[2] R. W. Aldrich and N. Holonyak, Jr., “Multi-terminal p-n-p-n switches,” Proc. IRE, vol. 46, pp.1236-1239, 1958.
[3] J. M. Goldey, I. M. Makintosh, and I. M. Ross, “Turn-off gain in p-n-p-n triodes,” Solid-State Electron., vol.3, p.119, 1961.
[4] F. E. Gentry, R. T. Scace, and J. K. Flowers, “Bidirectional triode p-n-p-n switches,” Proc. IEEE, vol.53, pp.355-369,19.
[5] E. K. Howell, “The light actuated SCR,” Appl. Note 200.34, General Electric Co., Schenectady, NY, 1965.
[6] F. E. Gentry and J. Moyson, “The amplifying gate thristor,” presented at IEEE Int. Electroc Device Meet., Washington, DC, 1968.
[7] R. A. Kokosa and B. R. Tuft, “A high-voltage, high temperature reverse conducting thyristor,” IEEE Trans. Electron Devices, vol. ED-17, no.9, pp.667-672, 1970.
[8] D. E. Houston, S. Krishna, D. Piccone, R. J. Finke, and Y. S. Sun, “Field-controlled thyristor(FCT)- A new electronic component,” presented at IEEE Int. Electron Device Meet., Wachington, DC, 1975.
[9] V. A. K. Temple and R. P. Love, “A 600V MOSFET with near ideal on-resistance,” in IEDM Tech. Dig., pp.664-666, 1978.
[10] J. D. Plummer and B. W. Scharf, “Insulated gate planar thyristors,” IEEE Trans. Electron Devices, vol. ED-27, pp. 380-394, 1980.
[11] A, Pshaenich, “The MOS-SCR, A new thyristor technology,” Motorola Engineering Bull. ED-103, 1982.
[12] B. J. Baliga, M. S. Adler, P. V. Gray, R. P. Love, and N. Zommer, “The insulated gate rectifier(IGR):A new power switching device,” in IEDM Tech. Dig., pp.264-267, 1982.
[13] M. Otsuka, “The forward characteristics of thyristors”, Proc. IEEE, vol.55, no.8, Aug.1967.
[14] H. F. Storm and J. G. St. Clair, “An involute gate-emitter configuration for thyristors, ” Trans. IEEE Japan, 1973.
[15] A. A. Jaecklin, “Structure of an efficient high power reverse conducting thyristor,” presented at IEEE Power Division Colloquium, London, England, Dec.1, 1978.
[16] P. S. Raderecht, “The development of a gate-assisted turn-off thyristor for use in high frequency applications,” Int. J. Electron., vol.36, pp.399-416, 1974
[17] E. S. Schlegel, “Gate-assisted turn-of thyristors,” IEEE Trans. Electron Devices, vol. ED-23, pp.888-892, 1976.
[18] J.Shimiza et al. “High-voltage high-power gate-assisted turn-off thyristor for high-frequency use,” IEEE Trans. Electron Devices, vol. ED-23, no.8, pp.883-887, 1976.
[19] V. A. K Temple and A. P. Ferro, “High power dual gate light-triggered thyristors,” IEEE Trans. Electron Devices, vol. ED-23, p. 893, 1976.
[20] E. Schlegel and D. Page, “A high power light activated thyristors,” in IEDM Tech.Dig., p.483, 1976.
[21] IEEE Standard Test Specification for Thyristor Diode Surge Protective Devices, IEEE Std C62.37-1996.
[22] P.D.Taylor, Thyristor Design and Realization,Wiley,New York,1993.
[23] J.J. Ebers, “Four-Terminal p-n-p-n Transistor”Proc.IEEE,40,1361(1952)
[24] D.A.Neamen“Semiconductor Physics AND DEVICES Basic Principle” 3rd ,2003. pp. 688-689.
[25] B.J. Baliga, “Power Semiconductor Devices”,PWS. Publishing company, 1995. pp. 265-266.
[26] T.Fujihira, “Theory of semiconductor superjunction devices”, Jpn. J. Appl. Phys., Vol. 36, pp.6254-6262, 1997
[27] G. Dobey, M. Marz, J.P. Stengl, H. Strack, J. Tihanyi and H. Weber, “A new generation of high voltage MOSFETs breaks the limit line of sili- con”, IEDM Tech Digest, pp.683-685, 1998.
[28] L. Lorenz, G. Dobey, A. Knapp and M. Marz, “COOLMOSTM-a new
milestone in high voltage power MOS”, ISPSD’ 1999, pp.3-10, 1999.
[29] D.J.Coe,”High Voltage Semiconductor Superjunction device”, U.S. Patent4754310, June 28, 1998.
[30] X.B. Chen, P.A. Mawby, K. Board, C.A.T. Salama, “Theory of a novel
voltage-sustaining layer for power devices”, Microelectronics journal
29 (1998) 1005-1011.
[31] T.Fujihira, Y. Onishi, S.Iwamoto,T. Sato, “24 mΩ-cm-2 680V Silicon
Superjunction MOSFET” ,Power Semiconductor Devices and ICs, 2002. Proceedings of the 14th International Symposium, pp241 – 244, 2002
[32] Min Liu, C. A. T. Salama, P. Schvan and M. King, “A fully resurfed, BiCMOS- compatible , high voltage MOS transistor”, ISPSD '96, pp. 143-146.
[33] ATHENA, 2D Process Simulation Software, Version-5.15.3.R, SILVACO International.
[34] DevEdit3D, Device Structure Editor, Version-2.8.5.R, SILVACO International.
[35] ATLAS, Device Simulation Software, Version-5.13.6.C, SILVACO International.
[36] Fu-Hsiung Yang, “The Design of 600V Vertical Super-Junction TSPDs”, NTHU-2006.6.
[37] Chung-Yo Hung, “The Design of 600V Lateral Super-Junction Thyristor Surge Protective Device”, NTHU-2007.6.
[38] M. Imam, Z. Hossain, M. Quddus, J. Adams, C. Hoggatt, T. Ishiquro, R.Nair, “Design and optimization of double-RESURF high-voltage lateral devices for a manufacturable process”, Electron Devices, IEEE Transactions on, vol. 50, pp.1697-1700, July 2003