研究生: |
黃弘任 Huang, Hung-Jen |
---|---|
論文名稱: |
使用儲存資料壓縮之交織最小最大值演算法的非二進制低密度奇偶檢查解碼器架構 A Trellis Min-Max Layered Non-Binary LDPC Decoder Architecture Using Compressed Storage |
指導教授: |
翁詠祿
Ueng,Yeong-Luh |
口試委員: |
王忠炫
Wang, Chung-Hsuan 吳仁銘 Wu, Jen-Ming |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 47 |
中文關鍵詞: | 非二進位低密度同位檢查碼 、訊息壓縮 、交織最小最大值演算法 |
外文關鍵詞: | nonbinary low-density parity-check codes, message compression, trellis min–max algorithm |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在中等長度的碼長下,非二進制低密度奇偶檢查解碼的錯誤更正能力會優於二進制低密度奇偶檢查解碼。但是相對的其解碼器需要使用比較複雜的的解碼演算法以及更多的儲存空間去實現。本篇論文提出了基於交織最小最大值演算法改進而來的儲存資料壓縮之高效率層皆式解碼器以及其他兩種提升解碼效率的硬體策略,分別是用來降低複雜度的機率式找小值單元、降低儲存空間的新壓縮儲存資料演算法,利用此種壓縮演算法相較於[16]這篇論文可以得到56\%的壓縮率。本篇提出的嶄新層皆式解碼演算法可以讓解碼器減少總體的指令管線層,讓整體解碼效率更為提高。本篇提出的方法使用了在32階的伽羅瓦體下的(837, 726)非二進制類循環區塊低密度奇偶檢查解碼器來應證,在90奈米製程實作下,這個解碼器擁有1228Mbps的吞吐量。與[16]相比有25.8\%的吞吐面積比的提升。
At moderate code length, non-binary (NB) low-density parity-check (LDPC) codes have better error correction capabilities than binary counterpart. Relatively, the high-order Galois fields (GFs) codes require more hardware complexity and memory areas. This paper presents an efficient layered scheduling non-binary LDPC decoder based on trellis Min-Max (TMM) algorithm with compressed storage algorithm and two improvement strategies for reducing decoder areas and enhance decoding throughput. The probabilistic sorting units are used for decreasing complexity in check node processor. And the new compression algorithm makes the storage areas of exchange messages achieve a reduction of 44\%. The novel layered algorithm rearranges the order of pipeline stages and makes the decoding more efficient. We implemented this decoder in 90-nm CMOS technology using the (837, 723) quasi-cyclic (QC) NB-LDPC code over GF(32) for demonstration. By the proposed techniques, the throughput of decoder can reach 1228 Mbps. And the throughput-area ratio increases by 25.8\%.
[1] R. Gallager, “Low-density parity-check codes,” IRE Transactions on Information Theory, vol. 8, no. 1, pp. 21–28, January 1962.
[2] M. C. Davey and D. MacKay, “Low-density parity check codes over GF(q),” IEEE Communications Letters, vol. 2, no. 6, pp. 165–167, June 1998.
[3] C. Spagnol and W. Marnane, “A class of quasi-cyclic LDPC codes over GF(2m),” IEEE Transactions on Communications, vol. 57, no. 9, pp. 2524–2527, September 2009.
[4] W. Chang and J. R. Cruz, “Performance and decoding complexity of nonbinary LDPC codes for magnetic recording,” IEEE Transactions on Magnetics, vol. 44, no. 1, pp. 211–216, Jan 2008.
[5] F. Guo and L. Hanzo, “Low complexity non-binary LDPC and modulation schemes communicating over MIMO channels,” in IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004, vol. 2, Sept 2004, pp.1294–1298 Vol. 2.
[6] S. Pfletschinger and D. Declercq, “Getting Closer to MIMO Capacity with Non-Binary Codes and Spatial Multiplexing,” in 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, Dec 2010, pp. 1–5.
[7] L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC over GF(2q),” in Proceedings 2003 IEEE Information Theory Workshop, March 2003, pp. 70–73.
[8] H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-domain decoding
of LDPC codes over GF(q),” in 2004 IEEE International Conference on Communications, vol. 2, June 2004, pp. 772–776 Vol.2.
[9] L. Barnault and D. Declercq, “Fast decoding algorithm for ldpc over GF(2q),” in Proceedings 2003 IEEE Information Theory Workshop, March 2003, pp. 70–73.
[10] Y. L. Ueng, K. H. Liao, H. C. Chou, and C. J. Yang, “A high-throughput trellis-based layered decoding architecture for non-binary LDPC codes using Max-Log-QSPA,” IEEE Transactions on Signal Processing, vol. 61, no. 11, pp. 2940–2951, June 2013.
[11] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary LDPC codes over GF (q),” IEEE Transactions on Communications, vol. 55, no. 4, pp. 633–643, April 2007.
[12] V. Savin, “Min-max decoding for non binary ldpc codes,” in 2008 IEEE International Symposium on Information Theory, July 2008, pp. 960–964.
[13] E. Li, D. Declercq, and K. Gunnam, “Trellis-based extended Min-Sum algorithm for non-binary LDPC codes and its hardware structure,” IEEE Transactions on Communications, vol. 61, no. 7, pp. 2600–2611, July 2013.
[14] J. O. Lacruz, F. Garc´ıa-Herrero, D. Declercq, and J. Valls, “Simplified trellis Min-Max decoder architecture for nonbinary low-density paritycheck codes,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 9, pp. 1783–1792, Sept 2015.
[15] J. O. Lacruz, F. Garc´ıa-Herrero, and J. Valls, “Reduction of complexity for nonbinary LDPC decoders with compressed messages,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 11, pp. 2676–2679, Nov 2015.
[16] J. O. Lacruz, F. Garc´ıa-Herrero, M. J. Canet, and J. Valls, “Reducedcomplexity nonbinary LDPC decoder for high-order Galois fields based on trellis Min-Max algorithm,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 8, pp. 2643–2653, Aug 2016.
[17] C. H. Yang, T. Y. Huang, M. R. Li, and Y. L. Ueng, “A 5.4 µW softdecision BCH decoder for wireless body area networks,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 9, pp. 2721–2729, Sept 2014.
[18] R. Gallager, “Low-density parity-check codes,” IRE Transactions on Information Theory, vol. 8, no. 1, pp. 21–28, January 1962.
[19] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” in Proceedings of IEEE International Symposium on Information Theory, Jun 1997, pp. 113–.
[20] M. M. Mansour and N. R. Shanbhag, “High-throughput LDPC decoders,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 6, pp. 976–996, Dec 2003.
[21] Y. L. Ueng, C. Y. Leong, C. J. Yang, C. C. Cheng, K. H. Liao, and S. W. Chen, “An efficient layered decoding architecture for nonbinary QC-LDPC codes,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 2, pp. 385–398, Feb 2012.
[22] C. L. Wey, M. D. Shieh, and S. Y. Lin, “Algorithms of Finding the First Two Minimum Values and Their Hardware Implementation,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 11, pp. 3430–3437, Dec 2008.
[23] B. Zhou, J. Kang, S. W. Song, S. Lin, K. Abdel-Ghaffar, and M. Xu, “Construction of non-binary quasi-cyclic LDPC codes by arrays and array dispersions,” IEEE Transactions on Communications, vol. 57, no. 6, pp. 1652–1662, June 2009.
[24] F. Cai and X. Zhang, “Relaxed Min-Max decoder architectures for nonbinary low-density parity-check codes,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 11, pp. 2010–2023, Nov 2013.
[25] H. P. Thi and H. Lee, “Two-Extra-Column Trellis Min-Max Decoder Architecture for Nonbinary LDPC Codes,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 5, pp. 1787–1791, May 2017.