簡易檢索 / 詳目顯示

研究生: 禾 熙
Ardón Maravilla, José Carlos
論文名稱: 新式科技接受度模型分析: 人工智慧聊天機器人
Technology Acceptance Model Analysis: AI Chatbot
指導教授: 丘宏昌
Chiu, Hung-Chang
口試委員: 謝依靜
Hsieh, Yi-Ching
唐運佳
Chia, Tang-Yun
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 國際專業管理碩士班
International Master of Business Administration(IMBA)
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 30
中文關鍵詞: 科技接受模式科技接受模式人工智慧人工智慧聊天機器人ChatGPT使用便利性幫助性使用行為傾向調節分析
外文關鍵詞: AI Chatbot, Behavioral Intention of Use
相關次數: 點閱:95下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 科技接受模式, 是個被廣泛運用並且有效的技術, 作為研究的基礎工具揭露會影響消費者決策的因素以採納及有效利用人工智慧聊天機器人. 在過去, 該模式作為調查使用人工智慧聊天機器人的行為目的性和檢驗作為調節者的角色所帶來的幫助上, 其使用便利性, 使用者闡述性, 工作關聯性以及滿意度上的效果. 我執行了一項調查, 共有195個樣本數, 其內容是針對由個人觀點對於創新的擴散的看法並加以分析. 我使用了探索性因素分析, 有效性, 可靠性, 以及調節作用分析作為評估該模式的方法. 結果顯示在使用的方便性以及幫助上, 兩者是對於使用人工智慧聊天機器人的行為傾向上具有相關性的變數, 兩者在變數的角色上對於使用便利性上及使用人工智慧聊天機器人的行為傾向的關係中具有部分/補充性的調節作用.


    The Technology Acceptance Model (TAM), a widely used and effective technique, served as the research's foundation tool to reveal the factors that influence consumers' decisions to embrace and utilize Artificial Intelligence Chatbots. It was used to investigate the effect of Perceived Ease of Use, User Demonstrability, Job Relevance, and Satisfaction on the Behavioral Intention of Use of AI Chatbots and to examine the role of Perceive Usefulness as a mediator of those relationships. A survey was conducted to obtain individual perception of the diffusion of innovation and a total data from 195 participants was analyzed. Exploratory Factor Analysis (EFA), Validity, Reliability, and Mediation Analysis were used to evaluate the model proposed. The results show that Perceived Ease of Use and Perceived Usefulness were the relevant variables to Behavioral Intention of Use of AI Chatbots and Perceived Usefulness acted as a partial / complementary mediator in the relationship between Perceived Ease of Use and Behavioral Intention of Use toward AI Chatbots.

    摘要____________________________I Abstract________________________II Acknowledgments_________________III List of Figures_________________2 List of Tables__________________3 Introduction____________________4 Conceptual Model Development____8 Dependent Variable______________9 Independent Variables___________9 Mediator________________________10 Control Variables_______________10 Methodology_____________________11 Data Collection_________________11 Questionnaire Development_______13 Measures________________________14 Data Analysis___________________18 Analysis and Interpretations from Baron & Kenny (1986) Approach________________________18 Analysis and Interpretations from Zhao, Lynch & Chen (2010) Approach________________________20 Conclusion______________________22 Limitations_____________________24 References______________________25 Appendix________________________29 Appendix 1. Questionnaire_______29

    Abu Shawar, B., & Atwell, E. (2007). Chatbots: Are they Really Useful? Journal for Language Technology and Computational Linguistics, 22(1). https://doi.org/10.21248/jlcl.22.2007.88

    Adamopoulou, E., & Moussiades, L. (2020). An Overview of Chatbot Technology. IFIP Advances in Information and Communication Technology, 584 IFIP. https://doi.org/10.1007/978-3-030-49186-4_31

    Ashfaq, M., Yun, J., Yu, S., & Loureiro, S. M. C. (2020). I, Chatbot: Modeling the determinants of users’ satisfaction and continuance intention of AI-powered service agents. Telematics and Informatics, 54. https://doi.org/10.1016/j.tele.2020.101473
    Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6). https://doi.org/10.1037//0022-3514.51.6.1173
    Battineni, G., Chintalapudi, N., & Amenta, F. (2020). Ai chatbot design during an epidemic like the novel coronavirus. Healthcare (Switzerland), 8(2). https://doi.org/10.3390/healthcare8020154

    Brynjolfsson, E., & Mitchell, T. (2017). What can machine learning do? Workforce implications: Profound change is coming, but roles for humans remain. In Science (Vol. 358, Issue 6370). https://doi.org/10.1126/science.aap8062

    Cheney, T. (2006). An Acceptance Model for Useful and Fun Information Systems. Human Technology: An Interdisciplinary Journal on Humans in ICT Environments, 2(2). https://doi.org/10.17011/ht/urn.2006520

    Chong, V. K. (2004). Job-relevant information and its role with task uncertainty and management accounting systems on managerial performance. Pacific Accounting Review, 16(2). https://doi.org/10.1108/01140580410818496

    Chuttur, M. (2009). Overview of the Technology Acceptance Model: Origins , Developments and Future Directions. Sprouts: Working Papers on Information Systems, 9(37). https://doi.org/10.1021/jf001443p

    Dale, R. (2021). GPT-3: What’s it good for? In Natural Language Engineering (Vol. 27, Issue 1). https://doi.org/10.1017/S1351324920000601

    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly: Management Information Systems, 13(3). https://doi.org/10.2307/249008

    Holden, R. J., & Karsh, B. T. (2010). The Technology Acceptance Model: Its past and its future in health care. In Journal of Biomedical Informatics (Vol. 43, Issue 1). https://doi.org/10.1016/j.jbi.2009.07.002

    Hong, S. J., Thong, J. Y. L., & Tam, K. Y. (2006). Understanding continued information technology usage behavior: A comparison of three models in the context of mobile internet. Decision Support Systems, 42(3). https://doi.org/10.1016/j.dss.2006.03.009

    Kim, K. J., Jeong, I. J., Park, J. C., Park, Y. J., Kim, C. G., & Kim, T. H. (2007). The impact of network service performance on customer satisfaction and loyalty: High-speed internet service case in Korea. Expert Systems with Applications, 32(3). https://doi.org/10.1016/j.eswa.2006.01.022

    Liao, Y. W., Wang, Y. S., & Yeh, C. H. (2014). Exploring the relationship between intentional and behavioral loyalty in the context of e-tailing. Internet Research, 24(5). https://doi.org/10.1108/IntR-08-2013-0181

    Lin, T. C., Wu, S., Hsu, J. S. C., & Chou, Y. C. (2012). The integration of value-based adoption and expectation-confirmation models: An example of IPTV continuance intention. Decision Support Systems, 54(1). https://doi.org/10.1016/j.dss.2012.04.004

    Lund, B. D., & Wang, T. (2023). Chatting about ChatGPT: how may AI and GPT impact academia and libraries? In Library Hi Tech News. https://doi.org/10.1108/LHTN-01-2023-0009

    Masrom, M. (2007). Technology acceptance model and E-learning. 12th International Conference on Education, May.
    Rahman, M. M., Lesch, M. F., Horrey, W. J., & Strawderman, L. (2017). Assessing the utility of TAM, TPB, and UTAUT for advanced driver assistance systems. Accident Analysis and Prevention, 108, 361–373. https://doi.org/10.1016/j.aap.2017.09.011

    Rayna et al. as cited in Jones, N. (2020). User Loyalty and Willingness to Pay for a Music Streaming Subscription Identifying Asset Specificity in the Case of Streaming Platforms. Duke University.

    Roose, K. (2022). The Brilliance and Weirdness of ChatGPT. New York Times.

    Simmons, A. B., & Chappell, S. G. (1988). Artificial Intelligence-definition and Practice. IEEE Journal of Oceanic Engineering, 13(2). https://doi.org/10.1109/48.551

    Sohn, K., & Kwon, O. (2020). Technology acceptance theories and factors influencing artificial Intelligence-based intelligent products. Telematics and Informatics, 47. https://doi.org/10.1016/j.tele.2019.101324

    Tang, K. Y., Chang, C. Y., & Hwang, G. J. (2021). Trends in artificial intelligence-supported e-learning: a systematic review and co-citation network analysis (1998–2019). In Interactive Learning Environments. Routledge. https://doi.org/10.1080/10494820.2021.1875001

    Venkatesh, V., & Davis, F. D. (2000). Theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. Management Science, 46(2). https://doi.org/10.1287/mnsc.46.2.186.11926

    Zhao, X., Lynch, J. G., & Chen, Q. (2010). Reconsidering Baron and Kenny: Myths and truths about mediation analysis. Journal of Consumer Research, 37(2). https://doi.org/10.1086/651257

    QR CODE