簡易檢索 / 詳目顯示

研究生: 王一晨
Wang, Yi-Chen
論文名稱: 藉由寬頻介電量測分析介電弛豫過程以及極性液體分子間交互作用
Investigation of Relaxation Processes and Intermolecular Interactions of Polar Liquids through Broadband Permittivity Characterization
指導教授: 張存續
CHANG, TSUN-HSU
口試委員: 朱國瑞
CHU, Kwo-Ray
姚欣佑
Yao, Hsin-Yu
洪健倫
Hung, Chien-Lung
陳仕宏
Chen, Shih-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 69
中文關鍵詞: 寬頻介電量測波模分析二元混合物異質交互作用分子動力學
外文關鍵詞: Broadband dielectric characterization, Modal analysis, Binary mixture, Heterogeneous molecular interaction, Molecular dynamics
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 量測物質之介電特性一直以來都是一門相當重要的技術,舉凡各種工業 製造行業或是學術研究皆無法離開這門領域。藉由精細量測介電性質可用於優化各式產線、協助設計元件亦或是幫助了解微觀物理特性。本研究提出一種操作於微波頻段 (100MHz-18GHz) 之寬頻流體介電量測方法,相較於其他種介電量測方式,本研究所提出方法具有非破獲性量測、所需樣品少以及易於量測之優點。並且我們利用此系統測量了四種低元單 羥基醇(甲醇、乙醇、1-丙醇和 1-丁醇)、四種低元羧酸(甲酸、乙酸、丙酸和油酸)以及其二元混合物之介電弛豫譜。透過適當選擇介電弛豫模型 (包含 Debye、Cole-Davidson、Cole-Cole 及 Havriliak–Negami) 來進行介電係 數擬合,且從中確定四種梭酸-乙醇混合物於九種不同莫爾濃度之弛豫參 數。藉由弛豫參數可加以計算得到各混和物之 Excess static permittivity、Excess Gibbs free energy、Kirkwood correlation factor 和 Bruggeman factor。這些數據可以在不同的微觀熱力學過程解釋之下得到一致之物理詮釋,其中牽涉現象包含氫鍵網路在分子間交互作用力下之旋轉、分解以及重構,同質及異質間偶極矩平行或反向排列趨勢,以及長鏈碳所引起之立體障礙等。這些結果不僅對極性流體間混和有更深入且清晰的了解,並且對工業製造 過程中所需之酯化反應設計以及藥物合成提供更具參考價值之數據。


    Measuring the dielectric properties of matter has always been a very important technology, and all industrial manufacturing industries or academic research cannot leave this field. By finely measuring dielectric properties, it can be used to optimize various production lines, assist in the design of components, or provide clear insight in microphysical properties. This work proposes a method for broadband liquid dielectric characterization from 100 MHz to 18 GHz. We characterized the broadband dielectric properties of four primary alcohols (methanol, ethanol, 1-propanol and 1-butanol), four monocarboxylic acids (formic, acetic, propionic and oleic acids) and their dihydric dielectric spectrum of the mixture. The fitting process was performed by appropriate selection of dielectric relaxation models (including DB, CD, CC, and HN model), and four carboxylic acid-ethanol mixtures’ relaxation parameters were determined under nine different molar concentrations. Excess static permittivity, Excess Gibbs free energy, Kirkwood correlation factor and Bruggeman factor for each mixture can be calculated from the relaxation parameters. Various microscopic dynamics processes, including the orientational rearrangement of hydrogen bond networks under intermolecular interactions, the parallel or anti-parallel alignment trend of dipole moments, and dielectric screening effect and steric hindrance due to long carbon chain, were proposed to explain those experimental results consistently. This work not only provides insight into the relaxation processes in binary polar-polar mixtures, but also gives out important data for the esterification process designs in industrial manufacture.

    Acknowledgements 摘要 i Abstract ii 1 緒論 1 1.1 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 介電係數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 介電量測方式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.1 共振與非共振系統 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.2 寬頻同軸測量系統 . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 理論推導 7 2.1 波導管分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 波導管本徵模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 圓柱波導管 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.3 同軸波導管 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 同軸-圓波導管不連續介面 . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 對稱性、邊界條件與正交性 . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 S 矩陣建構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.3 HFSS 模擬 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 同軸-同軸波導不連續介面 . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.1 波模分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.2 HFSS 模擬 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 開底式同軸探針 (open ended coaxial probe) . . . . . . . . . . . . . . . . . . 24 2.4.1 波模分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 實驗架設與數據處理 27 3.1 實驗器具與架設 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 校正方式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.1 標準 OSL 校正 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.2 常見液體校正 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3 光學量測 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4 數據處理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4 液體介電性質 35 4.1 等效介電與弛豫模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.1.1 靜場介電 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.1.2 弛豫過程 (Relaxation process) . . . . . . . . . . . . . . . . . . . . . . 36 4.2 純物質 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.1 低元醇類 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.2 低元有機酸類 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3 二元混合 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3.1 乙醇-有機酸混合介電譜與弛豫參數 . . . . . . . . . . . . . . . . . . 44 4.3.2 二元混合介電參數介紹 . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3.3 實驗二元混合介電參數 . . . . . . . . . . . . . . . . . . . . . . . . . 50 5 分子動力學模擬概述 (Gromacs 軟體) 53 5.1 計算原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.1.1 近似條件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.1.2 動力學方程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2 模擬步驟 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.2.1 力場選擇 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.2.2 預平衡 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.2.3 模擬 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3 參數分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.1 密度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.2 氫鍵數量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.3 介電常數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3.4 極化衰減函數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3.5 徑向分布函數 (Radial distribution function) . . . . . . . . . . . . . . 61 6 結論 63 A 散射矩陣 (Scattering matrix) 65 References 67

    [1] H.-Y. Yao, Y.-C. Wang, and T.-H. Chang, “Investigation of dielectric spectrums, relaxation
    processes, and intermolecular interactions of primary alcohols, carboxylic acids, and their
    binary mixtures,” Journal of Molecular Liquids, vol. 353, p. 118755, 2022.
    [2] F. Erchiqui, H. Kaddami, G. Dituba-Ngoma, and F. Slaoui-Hasnaoui, “Comparative study
    of the use of infrared and microwave heating modes for the thermoforming of wood-plastic
    composite sheets,” Int. J. Heat Mass Transf., vol. 158, p. 119996, 2020.
    [3] A. Prociak, L. Szczepkowski, J. Ryszkowska, M. Kurańska, M. Auguścik, E. Malewska,
    M. Gloc, and S. Michałowski, “Influence of Chemical Structure of Petrochemical Polyol
    on Properties of Bio-polyurethane Foams,” J. Polym. Environ., vol. 27, no. 11, pp. 2360–
    2368, 2019.
    [4] D. Q. M. Craig, Dielectric Analysis of Pharmaceutical Systems. London: CRC Press,
    1 ed., 1995.
    [5] P. P. Bobrov, V. N. Krasnoukhova, E. S. Kroshka, and A. S. Lapina, “Physics of semiconductors and dielectrics: Modeling of dielectric relaxation processes in moist sand rocks,”
    Russ. Phys. J., vol. 60, no. 4, pp. 711–716, 2017.
    [6] S. D. Romano and P. A. Sorichetti, Dielectric spectroscopy in biodiesel production and
    characterization. Green energy and technology, London: Springer, 2011.
    [7] J. M. Prausnitz, Molecular thermodynamics of fluid-phase equilibria. Prentice-Hall international series in the physical and chemical engineering sciences, Taipei: Pearson Education Taiwan, 3rd ed., taiwan ed. ed., 1999 - 2004.
    [8] T. Sato and R. Buchner, “Dielectric relaxation spectroscopy of 2-propanol-water mixtures,” J. Chem. Phys., vol. 118, no. 10, pp. 4606–4613, 2003.
    [9] S. K. Ray, B. Mohanty, S. Tripathy, and G. S. Roy, “Evaluation of excess Gibbs energy
    of mixing in binary mixtures of di-isobutyl ketone (DIBK) and nonpolar solvents,” Phys.
    Chem. Liq., vol. 38, no. 4, pp. 415–421, 2000.
    [10] J. Baker-Jarvis, M. D. Janezic, P. D. Domich, and R. G. Geyer, “Analysis of an open-ended
    coaxial probe with lift-off for nondestructive testing,” IEEE Transactions on Instrumentation and Measurement, vol. 43, no. 5, pp. 711–718, 1994.
    [11] S. Bakhtiari, S. I. Ganchev, and R. Zoughi, “Analysis of radiation from an open-ended
    coaxial line into stratified dielectrics,” IEEE Transactions on Microwave Theory and Techniques, vol. 42, no. 7, pp. 1261–1267, 1994
    [12] Z. Shen, J. Wang, and K. S. Lee, “Open-ended coaxial waveguide for conical-beam radiation,” IEEE transactions on antennas and propagation, vol. 60, no. 5, pp. 2518–2521,
    2012.
    [13] D. M. Pozar, Microwave engineering. Wiley, 4 ed., 2011.
    [14] J. D. Jackson, Classical Electrodynamics. New York, NY: Wiley, 3 ed., 1999.
    [15] O. Göttmann, U. Kaatze, and P. Petong, “Coaxial to circular waveguide transition as highprecision easy-to-handle measuring cell for the broad band dielectric spectrometry of liquids,” Meas. Sci. Technol., vol. 7, no. 4, pp. 525–534, 1996.
    [16] R. F. Huang and D. M. Zhang, “Application of mode matching method to analysis of axisymmetric coaxial discontinuity structures used in permeability and/or permittivity measurement,” Prog. Electromagn. Res., vol. 67, pp. 205–230, 2007.
    [17] U. Kaatze, “Reference liquids for the calibration of dielectric sensors and measurement
    instruments,” Measurement Science and Technology, vol. 18, pp. 967–976, feb 2007.
    [18] J. Barthel, K. Bachhuber, R. Buchner, and H. Hetzenauer, “Dielectric spectra of some
    common solvents in the microwave region. water and lower alcohols,” Chem. Phys. Lett.,
    vol. 165, no. 4, pp. 369–373, 1990.
    [19] U. Kaatze, K. Menzel, and R. Pottel, “Broad-band dielectric spectroscopy on carboxylic
    acid/water mixtures. Dependence upon composition,” J. Phys. Chem., vol. 95, no. 1,
    pp. 324–331, 1991.
    [20] N. S. Nahman, “Dielectric constant measurements on n-heptane and 2-heptanone,” 1994.
    [21] H.Frohlich, “Theory of Dielectric,” Theory of Dielectric, 1949.
    [22] R. Clausius, Die Mechanische Behandlung der Electricität. Vieweg+Teubner Verlag Wiesbaden, 1879.
    [23] L. Onsagbr, “Electric Moments of Molecules in Liquids,” Journal of the American Chemical Society, 1936.
    [24] J. G. Kirkwood, “The dielectric polarization of polar liquids,” The Journal of Chemical
    Physics, 1939.
    [25] P. Debye, “Polar molecules, the chemical catalog company,” Inc., New York, pp. 77–108,
    1929.
    [26] S. Havriliak and S. Negami, “A complex plane analysis of α-dispersions in some polymer
    systems,” J. Polym. Sci. Part C: Polym. Symp., vol. 14, no. 1, pp. 99–117, 1966.
    [27] S. Havriliak and S. Negami, “A complex plane representation of dielectric and mechanical
    relaxation processes in some polymers,” Polymer (Guildf)., vol. 8, no. C, pp. 161–210,
    1967.
    [28] R. Böhmer, C. Gainaru, and R. Richert, “Structure and dynamics of monohydroxy
    alcohols-Milestones towards their microscopic understanding, 100 years after Debye,”
    Phys. Rep., vol. 545, no. 4, pp. 125–195, 2014.
    [29] C. Hansen, F. Stickel, T. Berger, R. Richert, and E. W. Fischer, “Dynamics of glassforming liquids. iii. comparing the dielectric α- and β-relaxation of 1-propanol and oterphenyl,” J. Chem. Phys., vol. 107, no. 4, pp. 1086–1093, 1997.
    [30] W. M. Haynes, D. R. Lide, and T. J. Bruno, eds., CRC Handbook of Chemistry and
    Physics: a ready-reference book of chemical and physical data. Boca Raton, FL: CRC
    Press, 97 ed., 2016-2017.
    [31] D. R. Lide, ed., CRC Handbook of Chemistry and Physics,Internet Version 2005. Boca
    Raton, FL: CRC Press, 85 ed., 2005.
    [32] M. W. Sagal, “Dielectric relaxation in liquid alcohols and diols,” J. Chem. Phys., vol. 36,
    no. 9, pp. 2437–2442, 1962.
    [33] M. Hippler, “Proton relaxation and intermolecular structure of liquid formic acid: a nuclear magnetic resonance study,” Phys. Chem. Chem. Phys., vol. 4, pp. 1457–1463, 2002.
    [34] D. W. Davidson and R. H. Cole, “Dielectric relaxation in glycerine,” J. Chem. Phys.,
    vol. 18, no. 10, pp. 1417–1417, 1950.
    [35] D. W. Davidson and R. H. Cole, “Dielectric relaxation in glycerol, propylene glycol, and n-propanol,” J. Chem. Phys., vol. 19, no. 12, pp. 1484–1490, 1951.
    [36] H. A. Chaube, V. A. Rana, P. Hudge, and A. C. Kumbharkhane, “Dielectric relaxation
    studies of binary mixture of ethylene glycol mono phenyl ether and methanol by Time
    Domain Reflectometry,” J. Mol. Liq., vol. 193, pp. 29–36, 2014.
    [37] S. Pradhan and S. Mishra, “An eye on molecular interaction studies of non-aqueous binary
    liquid mixtures with reference to dielectric, refractive properties and spectral characteristics,” J. Mol. Liq., vol. 279, pp. 317–326, 2019.
    [38] S. M. Puranik, A. C. Kumbharkhane, and S. C. Mehrotra, “The static permittivity of binary
    mixtures using an improved bruggeman model,” J. Mol. Liq., vol. 59, no. 2-3, pp. 173–
    177, 1994.
    [39] S. Glaston, K. J. Laidler, and H. Eyring, “Transition state theory,” 1941.

    QR CODE