簡易檢索 / 詳目顯示

研究生: 賴怡廷
Lai, Yi-Ting
論文名稱: 利用還原氧化石墨烯及奈米銀線製備高性能可撓曲透明導電膜之研究
High performance flexible transparent conductive films based on reduced graphene oxides and silver nanowires
指導教授: 戴念華
Tai, Nyan-Hwa
口試委員: 戴念華
Nyan-Hwa Tai
葉孟考
Meng-Kao Yeh
邱博文
Po-Wen Chiu
李紫原
Chi-Young Lee
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 94
中文關鍵詞: 奈米銀線還原氧化石墨烯p型摻雜效應透明導電軟板單一製程
外文關鍵詞: silver nanowires, reduced graphene oxide, p-type doping, flexible transparent conductive films, one-step process
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用單一製程,製備一具有奈米銀線(AgNWs)和p型摻雜還原氧化石墨烯(p-rGO)的新型複合導電奈米材料,並具備均勻且分散性良好的特性。將此複合溶液塗佈在聚對苯二甲酸乙二酯(PET)基板上,可得到高性能的透明導電薄膜(TCFs),並具備可彎曲的性質。本研究發現鑑於p型摻雜還原氧化石墨烯的添加,不僅可以橋接未接觸的AgNWs,還可以提供更多電洞載子,並降低AgNWs線與線之間的接觸電阻,在不降低TCFs透光度的情況下,p-rGO可以有效增加導電效果。此外p-rGO也可牢靠的將AgNWs固定在基板上,因而提升AgNWs和基板之間的附著力。本實驗將此複合導電奈米材料塗佈在PET基板上製備TCFs,其最佳光電表現可達94.68%(在可見光波550 nm)的透光性與25.0 ohm/sq的片電阻值。此外將此TCFs經過曲率半徑為5 mm的彎曲測試,以及各經過1000次的伸張與壓縮的彎曲耐久度測試,此TCFs的片電阻值皆沒有顯著的上升,表示本TCFs可應用於可撓曲電子產品上。研究顯示以本複合導電奈米材料製備的TCFs是未來光電產業中取代現有透明導電材料的一個絕佳選項。


    This work demonstrates an one-step process to synthesize uniformly dispersed hybrid nanomaterial containing silver nanowires (AgNWs) and p-type reduced graphene (p-rGO). The hybrid nanomaterial was coated onto a polyethylene terephthalate (PET) substrate to prepare high performance flexible transparent conductive films (TCFs). The p-rGO plays the role of bridging discrete AgNWs, providing more electron holes, and lowering the resistance of the contacted AgNWs, which enhances the electrical conductivity without sacrificing too much transparence of the TCFs. In addition, the p-rGO also improves the adhesion between AgNWs and substrate by covering the AgNWs on substrate tightly. The study shows that coating of the hybrid nanomaterials on the PET substrate demonstrates exceptional optoelectronic properties with a transmittance of 94.68% (at a wavelength of 550 nm) and a sheet resistance of 25.0 ohm/sq. Furthermore, no significant variation in electric resistance can be detected even though the film was subjected to a bend loading with a radius of curvature of 5.0 mm or the film was loaded with a reciprocal tension or compression for 1000 cycles. The study shows that the fabricated flexible TCFs have the potential to replace indium tin oxide film in the optoelectronic industry.

    摘要……………………………………………………………………….I Abstract………………………………………………………………...II 致謝……………………………………………………………………..Ⅳ 目錄…………………………………………………………………Ⅵ 表目錄………………………………………………………………Ⅹ 圖目錄………………………………………………………………..XI 第一章 緒論…………………………………………………………......1 1.1 前言………………………………………………….……….…1 1.2 研究動機………………………………………………………..2 第二章 文獻回顧………………………………………………………..4 2.1 透明導電膜簡介………………………………………………..4 2.1.1 金屬薄膜類……………………………………..……..…..5 2.1.2 金屬氧化物薄膜…………………………………………..6 2.1.2.1 銦錫氧化物………………………………………..6 2.1.2.2 氧化鋅型…………………………………………..8 2.1.3 導電高分子類……………………………………………..9 2.1.4 新型碳材料類……………………………………………10 2.2 奈米銀線簡介…………………………………………………12 2.3 奈米銀線之製備………………………………………………12 2.3.1 紫外光照射光還原法製備………………………………13 2.3.2 固-液相電弧法製備……………………………………...13 2.3.3 脈衝超聲電化學法製備…………………………………14 2.3.4 晶種異質成核法製備……………………………………14 2.3.5 電化學法製備……………………………………………15 2.3.6 多元醇法製備……………………………………………16 2.4 石墨烯簡介……………………………………………………19 2.5 石墨烯之製備…………………………………………………20 2.5.1 機械剝離法製備…………………………………………20 2.5.2 液相剝離法製備…………………………………………21 2.5.3 在碳化矽基板上成長……………………………………21 2.5.4 在金屬基板上析出成長…………………………………22 2.5.5 化學氣相沉積法製備……………………………………22 2.5.6 氧化石墨烯還原法製備…………………………………23 第三章 實驗方法與分析………………………………………………44 3.1 實驗材料………………………………………………………44 3.2 製程設備與材料分析儀器……………………………………44 3.2.1 高速離心機………………………………………...……44 3.2.2 超音波震盪機………………………………………...…45 3.2.3 真空電漿機………………...……………………………45 3.2.4 塗佈棒…………………….......…………………………45 3.2.5 場發射掃描式電子顯微鏡………………...……………46 3.2.6 X光繞射分析儀…………………………………………46 3.2.7 X光光電子能譜儀………………………………………46 3.2.8 紫外光/可見光分光光譜儀…………………...………...47 3.2.9 拉曼光譜儀…………………………………...…………47 3.3 實驗步驟及方法………………………………………………48 3.3.1 製備氧化石墨烯……………………………...…………48 3.3.2 單一製程製備奈米銀線/p型摻雜石墨烯複合導電溶液……………………………………….....………….….49 3.3.3 製備透明導電膜……………………………………...…50 第四章 結果與討論……………………………………………………54 4.1 氧化石墨烯之特性分析………………………………………55 4.1.1 表面形貌分析…………………………………………...55 4.1.2 X光繞射光譜分析………………………………………55 4.2 奈米銀線之特性分析…………………………………………56 4.2.1 表面形貌分析…………………………………………...56 4.2.2 X光繞射光譜分析………………………………………57 4.3 新型複合導電奈米材料之特性分析…………………………57 4.3.1 表面形貌分析…………………………………………...57 4.3.2 拉曼光譜分析…………………………………………...58 4.3.3 X光光電子能譜儀分析…………………………………59 4.4 透明導電膜特性分析…………………………………………60 4.4.1 透明導電膜之光電表現………………………………...60 4.4.2 透明導電膜之彎曲測試………………………………...61 4.4.3 透明導電膜之耐彎曲次數測試………………………...62 4.4.4 透明導電膜之附著力測試……………………………...63 4.4.5 新型複合導電奈米材料機制探討……………………...63 第五章 結論……………………………………………………………79 參考文獻………………………………………………………………..80

    1. Lien, S. Y. Characterization and optimization of ITO thin films for application in heterojunction silicon solar cells. Thin Solid Films 2010, 518, S10-S13.
    2. Suzuki, Y.; Niino, F.; Katoh, K. Low-resistivity ITO films by dc arc discharge ion plating for high duty LCDs. Journal of Non-Crystalline Solids 1997, 218, 30-34.
    3. Tak, Y.-H.; Kim, K. B.; Park, H. G.; Lee, K. H.; Lee, J. R. Criteria for ITO (indium–tin-oxide) thin film as the bottom electrode of an organic light emitting diode. Thin Solid Films 2002, 411, 12-16.
    4. Tseng, S. F.; Hsiao, W.-T.; Huang, K. C.; Chiang, D.; Chen, M. F.; Chou, C. P. Laser scribing of indium tin oxide (ITO) thin films deposited on various substrates for touch panels. Applied Surface Science 2010, 257, 1487-1494.
    5. Hanson, E. L.; Guo, J.; Koch, N.; Schwartz, J.; Bernasek, S. L. Advanced surface modification of indium tin oxide for improved charge injection in organic devices. Journal of the American Chemical Society 2005, 127, 10058-10062.
    6. Bardecker, J. A.; Ma, H.; Kim, T.; Huang, F.; Liu, M. S.; Cheng, Y.-J.; Ting, G.; Jen, A. K. Y. Self-assembled electroactive phosphonic acids on ITO: maximizing hole-injection in polymer light-emitting diodes. Advanced Functional Materials 2008, 18, 3964-3971.
    7. Minami, T. Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes. Thin Solid Films 2008, 516, 5822-5828.
    8. Cairns, D. R.; Witte, R. P.; Sparacin, D. K.; Sachsman, S. M.; Paine, D. C.; Crawford, G. P.; Newton, R. R. Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Applied Physics Letters 2000, 76, 1425-1427.
    9. Leterrier, Y.; Médico, L.; Demarco, F.; Månson, J. A. E.; Betz, U.; Escolà, M. F.; Kharrazi Olsson, M.; Atamny, F. Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays. Thin Solid Films 2004, 460, 156-166.
    10. Nguyen, D. D.; Tai, N. H.; Chueh, Y. L.; Chen, S. Y.; Chen, Y. J.; Kuo, W. S.; Chou, T. W.; Hsu, C. S.; Chen, L. J. Synthesis of ethanol-soluble few-layer graphene nanosheets for flexible and transparent conducting composite films. Nanotechnology 2011, 22, 295606.
    11. Gao, L.; Ren, W.; Zhao, J.; Ma, L. P.; Chen, Z.; Cheng, H.-M. Efficient growth of high-quality graphene films on Cu foils by ambient pressure chemical vapor deposition. Applied Physics Letters 2010, 97.
    12. Nguyen, D. D.; Lai, Y. T.; Tai, N. H. Enhanced field emission properties of a reduced graphene oxide/carbon nanotube hybrid film. Diamond and Related Materials 2014, 47, 1-6.
    13. Liu, B. T.; Kuo, H. L. Graphene/silver nanowire sandwich structures for transparent conductive films. Carbon 2013, 63, 390-396.
    14. Sun, Y.; Yin, Y.; Mayers, B. T.; Herricks, T.; Xia, Y. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chemistry of Materials 2002, 14, 4736-4745.
    15. Lee, M. S.; Lee, K.; Kim, S. Y.; Lee, H.; Park, J.; Choi, K. H.; Kim, H. K.; Kim, D. G.; Lee, D. Y.; Nam, S.; Park, J. U. High-performance, transparent, and stretchable electrodes using graphene–metal Nanowire hybrid structures. Nano Letters 2013, 13, 2814-2821.
    16. Choi, D. Y.; Kang, H. W.; Sung, H. J.; Kim, S. S. Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method. Nanoscale 2013, 5, 977-983.
    17. Jiu, J.; Nogi, M.; Sugahara, T.; Tokuno, T.; Araki, T.; Komoda, N.; Suganuma, K.; Uchida, H.; Shinozaki, K. Strongly adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique. Journal of Materials Chemistry 2012, 22, 23561-23567.
    18. Xia, Y.; Sun, K.; Ouyang, J. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Advanced Materials 2012, 24, 2436-2440.
    19. Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Letters 2008, 8, 689-692.
    20. Degiron, A.; Lezec, H. J.; Barnes, W. L.; Ebbesen, T. W. Effects of hole depth on enhanced light transmission through subwavelength hole arrays. Applied Physics Letters 2002, 81, 4327-4329.
    21. Braun, J.; Gompf, B.; Kobiela, G.; Dressel, M. How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array. Physical Review Letters 2009, 103, 203901.
    22. Kang, M. G.; Guo, L. J. Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes. Advanced Materials 2007, 19, 1391-1396.
    23. Minami, T. Transparent conducting oxide semiconductors for transparent electrodes. Semiconductor Science and Technology 2005, 20, S35.
    24. Hung, W. C.; Sheu, T. K.; Wang, M. A.; Kou, S. W.; Su, C. ITO thin film: from development and application to preparation and characterization. The Chinese Chem. Soc. 2005, 63, 409-418.
    25. Nishio, K.; Sei, T.; Tsuchiya, T. Preparation and electrical properties of ITO thin films by dip-coating process. Journal of Materials Science 1996, 31, 1761-1766.
    26. Tahar, R. B. H.; Ban, T.; Ohya, Y.; Takahashi, Y. Electronic transport in tin-doped indium oxide thin films prepared by sol-gel technique. Journal of Applied Physics 1998, 83, 2139-2141.
    27. Furusaki, T.; Kodaira, K.; Yamamoto, M.; Shimada, S.; Matsushita, T. Preparation and properties of tin-doped indium oxide thin films by thermal decomposition of organometallic compounds. Materials Research Bulletin 1986, 21, 803-806.
    28. Djaoued, Y.; Vu Hong, P.; Badilescu, S.; Ashrit, P. V.; Girouard, F. E.; Vo-Van, T. Sol-gel-prepared ITO films for electrochromic systems. Thin Solid Films 1997, 293, 108-112.
    29. Ramanan, S. R. Dip coated ITO thin-films through sol–gel process using metal salts. Thin Solid Films 2001, 389, 207-212.
    30. Tomonaga, H.; Morimoto, T. Indium–tin oxide coatings via chemical solution deposition. Thin Solid Films 2001, 392, 243-248.
    31. Kim, S.-S.; Choi, S.-Y.; Park, C.-G.; Jin, H.-W. Transparent conductive ITO thin films through the sol-gel process using metal salts. Thin Solid Films 1999, 347, 155-160.
    32. Raimondi, D. L.; Kay, E. High resistivity transparent ZnO thin films. Journal of Vacuum Science and Technology 1970, 7, 96-99.
    33. Cao, P.; Zhao, D. X.; Zhang, J. Y.; Shen, D. Z.; Lu, Y. M.; Yao, B.; Li, B. H.; Bai, Y.; Fan, X. W. Optical and electrical properties of p-type ZnO fabricated by NH3 plasma post-treated ZnO thin films. Applied Surface Science 2008, 254, 2900-2904.
    34. Lu, J.; Zhang, Y.; Ye, Z.; Wang, L.; Zhao, B.; Huang, J. p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations. Materials Letters 2003, 57, 3311-3314.
    35. Zhang, X. B.; Pei, Z. L.; Gong, J.; Sun, C. Investigation on the electrical properties and inhomogeneous distribution of ZnO:Al thin films prepared by dc magnetron sputtering at low deposition temperature. Journal of Applied Physics 2007, 101, -.
    36. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH). Journal of the Chemical Society, Chemical Communications 1977, 578-580.
    37. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56-58.
    38. Endo, M.; Takeuchi, K.; Kobori, K.; Takahashi, K.; Kroto, H. W.; Sarkar, A. Pyrolytic carbon nanotubes from vapor-grown carbon fibers. Carbon 1995, 33, 873-881.
    39. Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603-605.
    40. Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 1996, 381, 678-680.
    41. Ebbesen, T. W.; Lezec, H. J.; Hiura, H.; Bennett, J. W.; Ghaemi, H. F.; Thio, T. Electrical conductivity of individual carbon nanotubes. Nature 1996, 382, 54-56.
    42. Abdelhalim, A.; Abdellah, A.; Scarpa, G.; Lugli, P. Fabrication of carbon nanotube thin films on flexible substrates by spray deposition and transfer printing. Carbon 2013, 61, 72-79.
    43. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat Mater 2007, 6, 183-191.
    44. Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat Photon 2010, 4, 611-622.
    45. Chen, D.; Qiao, X.; Qiu, X.; Chen, J.; Jiang, R. Large-scale synthesis of silver nanowires via a solvothermal method. J Mater Sci: Mater Electron 2011, 22, 6-13.
    46. Chen, C.; Wang, L.; Jiang, G.; Zhou, J.; Chen, X.; Yu, H.; Yang, Q. Study on the synthesis of silver nanowires with adjustable diameters through the polyol process. Nanotechnology 2006, 17, 3933.
    47. Hu, L.; Kim, H. S.; Lee, J.-Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955-2963.
    48. Zhou, Y.; Yu, S. H.; Wang, C. Y.; Li, X. G.; Zhu, Y. R.; Chen, Z. Y. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites. Advanced Materials 1999, 11, 850-852.
    49. Zhou, Y.; Yu, S. H.; Cui, X. P.; Wang, C. Y.; Chen, Z. Y. Formation of silver nanowires by a novel solid−liquid phase arc discharge method. Chemistry of Materials 1999, 11, 545-546.
    50. Zhu, J.; Liu, S.; Palchik, O.; Koltypin, Y.; Gedanken, A. Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir 2000, 16, 6396-6399.
    51. Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chemical Communications 2001, 617-618.
    52. Fang, J.; Hahn, H.; Krupke, R.; Schramm, F.; Scherer, T.; Ding, B.; Song, X. Silver nanowires growth via branch fragmentation of electrochemically grown silver dendrites. Chemical Communications 2009, 1130-1132.
    53. Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y. Polyol synthesis of uniform silver nanowires:  a plausible growth mechanism and the supporting evidence. Nano Letters 2003, 3, 955-960.
    54. Jiang, P.; Li, S. Y.; Xie, S.-S.; Gao, Y.; Song, L. Machinable long PVP-stabilized silver nanowires. Chemistry – A European Journal 2004, 10, 4817-4821.
    55. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
    56. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308.
    57. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706-710.
    58. Nguyen, D. D.; Tai, N. H.; Chen, S. Y.; Chueh, Y. L. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters. Nanoscale 2012, 4, 632-638.
    59. Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z.; Colombo, L.; Ferrari, A. C. Production and processing of graphene and 2d crystals. Materials Today 2012, 15, 564-589.
    60. Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; McGovern, I. T.; Duesberg, G. S.; Coleman, J. N. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society 2009, 131, 3611-3620.
    61. Badami, D. V. Graphitization of [alpha]-silicon carbide. Nature 1962, 193, 569-570.
    62. Shelton, J. C.; Patil, H. R.; Blakely, J. M. Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition. Surface Science 1974, 43, 493-520.
    63. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.
    64. Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. Journal of the American Chemical Society 1958, 80, 1339-1339.
    65. Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229-1232.
    66. Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Advanced Functional Materials 2009, 19, 2577-2583.
    67. Chen, R.; Das, S. R.; Jeong, C.; Khan, M. R.; Janes, D. B.; Alam, M. A. Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes. Advanced Functional Materials 2013, 23, 5150-5158.
    68. Naito, K.; Yoshinaga, N.; Tsutsumi, E.; Akasaka, Y. Transparent conducting film composed of graphene and silver nanowire stacked layers. Synthetic Metals 2013, 175, 42-46.
    69. Nekahi, A.; Marashi, P. H.; Haghshenas, D. Transparent conductive thin film of ultra large reduced graphene oxide monolayers. Applied Surface Science 2014, 295, 59-65.
    70. Karthick, R.; Brindha, M.; Selvaraj, M.; Ramu, S. Stable colloidal dispersion of functionalized reduced graphene oxide in aqueous medium for transparent conductive film. Journal of Colloid and Interface Science 2013, 406, 69-74.
    71. Wassei, J. K.; Cha, K. C.; Tung, V. C.; Yang, Y.; Kaner, R. B. The effects of thionyl chloride on the properties of graphene and graphene-carbon nanotube composites. Journal of Materials Chemistry 2011, 21, 3391-3396.
    72. Parekh, B. B.; Fanchini, G.; Eda, G.; Chhowalla, M. Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization. Applied Physics Letters 2007, 90.
    73. Luu, Q. N.; Doorn, J. M.; Berry, M. T.; Jiang, C.; Lin, C.; May, P. S. Preparation and optical properties of silver nanowires and silver-nanowire thin films. Journal of Colloid and Interface Science 2011, 356, 151-158.
    74. Li, Y.; Cui, P.; Wang, L.; Lee, H.; Lee, K.; Lee, H. Highly bendable, conductive, and transparent film by an enhanced adhesion of silver nanowires. ACS Applied Materials & Interfaces 2013, 5, 9155-9160.
    75. Su, C. Y.; Xu, Y.; Zhang, W.; Zhao, J.; Tang, X.; Tsai, C. H.; Li, L. J. Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chemistry of Materials 2009, 21, 5674-5680.
    76. Dresselhaus, M. S.; Jorio, A.; Saito, R. Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annual Review of Condensed Matter Physics 2010, 1, 89-108.
    77. Rao, A. M.; Eklund, P. C.; Bandow, S.; Thess, A.; Smalley, R. E. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 1997, 388, 257-259.
    78. Jo, K.; Lee, T.; Choi, H. J.; Park, J. H.; Lee, D. J.; Lee, D. W.; Kim, B.-S. Stable aqueous dispersion of reduced graphene nanosheets via non-covalent functionalization with conducting polymers and application in transparent electrodes. Langmuir 2011, 27, 2014-2018.
    79. Andrew, J. S.; Rakesh, A. A.; Amanda, V. E.; Joe, G. S.; Gunther, G. A.; Jamie, S. Q.; David, A. L. Highly conductive interwoven carbon nanotube and silver nanowire transparent electrodes. Science and Technology of Advanced Materials 2013, 14, 035004.
    80. Miller, M. S.; O’Kane, J. C.; Niec, A.; Carmichael, R. S.; Carmichael, T. B. Silver nanowire/optical adhesive coatings as transparent electrodes for flexible electronics. ACS Applied Materials & Interfaces 2013, 5, 10165-10172.
    81. Wu, L. Y. L.; Kerk, W. T.; Wong, C. C. Transparent conductive film by large area roll-to-roll processing. Thin Solid Films 2013, 544, 427-432.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE