簡易檢索 / 詳目顯示

研究生: 陳傳勲
Chen,Chuan-Xun
論文名稱: 利用微液滴觀察顆粒物質成分對金黃色葡萄球菌代謝能力的影響
Investigate The Effects of Particulate Matter Compositions on the Metabolic Activity of Staphylococcus aureus using Microdroplet
指導教授: 王翔郁
Wang, Hsiang-Yu
口試委員: 陳致真
Chen, Chih-chen
張晃猷
Chang, Hwan-You
高承源
Kao, Cheng-Yuan
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 104
中文關鍵詞: 微液滴金黃色葡萄球菌顆粒物質
外文關鍵詞: Microfluidic droplet, Staphylococcus aureus, Particulate matters
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用點盤法定量起始菌液濃度,使用接近於人體環境的RPMI+10%FBS作為培養液,在微液滴中培養金黃色葡萄球菌,並添加AlamarBlue染劑檢測螢光亮度,藉此檢測金黃色葡萄球菌的代謝活性。在添加SRM 1648a、SRM 2585和SRM 2711a的水相成分後,實驗組別的螢光強度與控制組相比皆較低(-2.1%~-10.6%),可見添加顆粒物質的水相成分會降低金黃色葡萄球菌的代謝活性。但在培養1小時候,實驗組的螢光強度變化趨勢隨著添加的顆粒物質改變,SRM 2585的組別在第1個小時平均螢光強度高於控制組(+7.9%),SRM 1648a的組別在第2個小時平均螢光強度高於控制組(+0.6%),但SRM 2711a在第6個小時扔低於控制組(-2.2%),原因在SRM 2585與SRM 1648a於含有的低分子量(低環數)PAHs可能被金黃色葡萄球菌降解成為額外的養分,因此金黃色葡萄球菌的代謝活性增加,而 SRM 2711a中的低環數PAHs則可能會抑制金黃色葡萄球菌的代謝活性。在有限的觀測時間下,三種顆粒物質的水相成分皆會造成族群分布的擴大,推測原因為不同細胞對相同添加成分的耐受性不同,因此造成族群分布的差異。在微液滴中也可觀察到不同顆粒物質油相成分對於金黃色葡萄球菌的代謝能力有不同的影響。在實驗起始時,實驗組別的螢光強度與控制組相比皆較低(-1.8%~-5.3%),但加入SRM 2711a的組別在第2個小時超越控制組(+3.3%),但加入SRM 1648a和SRM 2585的組別分別在第2個小時的平均螢光強度相對於控制組來的低(-4.2%,-11.5%),原因在於SRM 2711a油相成分中的高分子PAHs可能提供了額外的養分給金黃色葡萄球菌,因此能增加其代謝活性,而SRM 1648a和SRM 2585中的高分子PAHs可能對金黃色葡萄球菌有抑制作用,使其代謝活性有顯著的下降趨勢。加入三種顆粒物質油相成分後,族群分布也隨著培養時間增加而有不同的變化,推測為不同細胞對相同添加成分的耐受性不同,因此造成族群的變異度隨時間而改變。
    另外在巨觀實驗中,亦探討了未處理的顆粒物質本身,以及移除水相以及油相成分後的的固體成分,對金黃色葡萄球菌代謝活性的影響。在固體成分實驗中,SRM 1648a中的金黃色葡萄球代謝活性在第4個小時低於控制組(P<0.0001),SRM 2585中的金黃色葡萄球菌代謝活性在第4個小時高於控制組(P<0.0001),而SRM 2711a中的金黃色葡萄球菌代謝活性在第4個小時與控制組沒有差別(P=0.0604)。這些差異顯示了不同顆粒物質的固體成分對金黃色葡萄球菌代謝能力的影響不盡相同。SRM 1648a與SRM 2711a含有不可溶的金屬氧化物可能對於金黃色葡萄球菌來說可能具有毒性,因此金黃色葡萄球菌代謝活性降低,SRM 2585中所含的金屬氧化物成分則毒性不高,且可能固體顆粒上有殘留有機成分,使得金黃色葡萄球菌的代謝活性增加。最後,加入未處理的顆粒物質後,SRM 1648a與SRM 2585組別的代謝活性高於控制組,P-value在第4個小時的數值分別為P=0.0444和P<0.0001,而SRM 2711a與控制組差異不大(P-value在第4個小時的數值為0.9805)。根據先前上述實驗結果總結,SRM 1648a與SRM 2585中水相成分的代謝促進作用大於油相成分與固體成分的抑制作用,因此會使金黃色葡萄球菌的代謝活性增加,而SRM 2711a中油相成分的代謝促進作用與水相與固體成分的抑制作用相互抵銷,因此金黃色葡萄球菌的代謝活性與控制組相似。比較巨觀實驗與微觀實驗的結果,可發現微觀系統可觀察不同時間點的族群分布,對於了解外在環境因素對於不同細胞代謝活性影響的探討更具有參考價值。


    This study aims to investigate the components of particulate matter (PM) on the metabolic activity of Staphylococcus aureus and uses microfluidic droplet and 96-well plate as research tool to compare the differences. The bacterial number inoculated in the microdroplet was determined and controlled by the dot plate experiment, and RPMI+10%FBS was chosen as the culture medium to mimic human body condition. A fluorogenic dye, AlamarBlue, was added in the droplet to examinate the metabolic activity of S. aureus.
    Immediately after droplet formation, the fluorescence intensity of the experimental group adding water-soluble components of PM is lower than that of the control group (-2.2%~-11.3%). The data show that S. aureus metabolic activity decreased after adding aqueous phase components of PM. The average fluorescence intensity of SRM 2585 group became higher (+7%) than the control in 1 hours, while the SRM 1648a group was higher (+0.6%) than control in 2 hours. Nonetheless, the SRM 2711a group had a fluorescence intensity lower (-1.5%) than the control till the 6th hours. These results indicated that the low molecular weight PAHs (LMW PAHs) in SRM1648a and SRM 2585 dissolved in water can be used by S. aureus as carbon sources. However, a higher than ideal concentration of PAHs can also inhibit the metabolic activity of S. aureus. Therefore, SRM 2585 had the highest enhancement on the metabolic activity even though SRM 1648a had a higher amount of LMW PAHs. On the other hand, the LMW PAHs in SRM 2711a decrease S. aureus metabolic activity. Under the limited observation duration, the aqueous phase elements of the three PMs cause the expansion of the population distribution. It is presumed that the tolerance toward LMW PAHS of different cells various, thus causing the widened population distribution.
    The microfluidic droplet experiments also observe that different oily phase elements of PM have different effects on the metabolic activity of S. aureus. At the beginning of the experiment, the fluorescence intensities of experimental groups are lower than that of the control group (-1.8%~-5.3%). The fluorescence intensity of SRM 2711a group become higher (+3.3%) than the control in 2 hours, while the SRM 1648a (-4.2%) and SRM 2585 (-11.5%) groups are lower than control in 2 hours. It is supposed that the high molecular weight PAHs (HMW PAHs) in SRM 2711a can be easily used by S. aureus as the carbon source and increase the metabolic activity of S. aureus. According to the results, the HMW PAHs in SRM 1648a and SRM 2585 have inhibitive effects on S. aureus, so the metabolic activity of S. aureus decreases. After adding the oily phase components, the population distribution of experimental groups fluctuates along culture duration. It is presumed that the tolerances of different cells to the same oily phase components are different, thus causing the variation of populations to change with time.
    Furthermore, in the macroscopic experiment, we discuss the influence of insoluble components of PM on the metabolic activity of S. aureus. The metabolic activity of SRM 1648 group is lower than the control in 4 hours (P<0.0001), while the metabolic activity of SRM 2585 group is higher than the control in 4 hours (P<0.0001). Nonetheless, the SRM 2711a group had a fluorescence intensity similar with the control group till the 4th hour (P=0.0604). These differences show that the solid components of different PMs have different effects on the metabolic activity of S. aureus. The solid content may contain insoluble metal oxides, and the metal oxides contained in SRM 1648a and SRM 2711a can be toxic to S. aureus, reducing the metabolic activity of S. aureus. From these results, the solid component of SRM 2585 is not highly toxic to S. aureus, and there might be residual organic components on the solid particles, leading to the increased metabolic activity of S. aureus. Finally, under the influence of total particulate matters, the metabolic activities of the SRM 1648a and SRM 2585 groups are higher than that of the control group (P-value at the 4th hour was P=0.0444 and P<0.0001). However, the SRM 2711a group is not significantly different from the control group (P-value at 4 hours was 0.9805). In summary, the metabolism-promoting effect of aqueous phase components in SRM 1648a and SRM 2585 is greater than the inhibitory effect of oily phase and solid components, thus increasing the metabolic activity of S. aureus. On the other hand, the promoted effects of oily phase component in SRM 2711a is counteracted by the inhibitory effect of aqueous phase and solid compounds, and the metabolic activity of S. aureus is similar to that of the control group.
    Comparing the microfluidic and macroscale experiments, the microscopic experiments observe the population distribution at different time points, which is more informational for understanding the influence of external environmental factors on the metabolic activity of different cell populations.

    摘要 ii Abstract iv 致謝 viii 目錄 ix 表目錄 xiii 圖目錄 xiv 第1章 緒論 1 1.1 介紹 1 1.2 實驗動機與目的 1 1.3 實驗規劃 1 第2章 文獻回顧 4 2.1 空氣汙染對人體的影響 4 2.2 微生物族群 8 2.2.1 微生物對人體的影響 8 2.2.2 微生物與疾病的關聯 11 2.2.3 顆粒物質與微生物之間的關係 13 2.3 微液滴系統 16 2.3.1 微液滴系統的發展與優點 16 2.3.2 微液滴的生成方法與技術 17 2.3.3 生產液滴的參數影響 21 2.4 微液滴應用於微生物 23 2.4.1 微液滴中微生物的連續檢測方法 25 第3章 實驗方法與材料 28 3.1 金黃色葡萄球菌的生長週期 28 3.1.1 藥品配置 28 3.1.2 金黃色葡萄球菌液態培養 29 3.1.3 點盤法與吸光值測定法 29 3.2 不同培養液對金黃色葡萄球菌的生長影響 32 3.2.1 藥品配置 32 3.2.2 實驗設計 32 3.3 利用微液滴培養金黃色葡萄球菌 33 3.3.1 微流道母模設計圖與製程 33 3.3.2 微流道製作 39 3.3.3 微液滴生產 40 3.4 將微液滴放入微孔盤中培養 41 3.4.1 微孔盤設計與製程 41 3.4.2 微系統設計製程 42 3.4.3 液滴在孔盤中的直徑變化 43 3.4.4 金黃色葡萄球菌的代謝活性 44 3.4.5 統計數據分析 45 3.5 顆粒物質與金黃色葡萄球菌的巨觀實驗 48 3.6 顆粒物質配置與萃取方法 50 3.6.1 SRM 1648a 50 3.6.2 SRM 2585 52 3.6.3 SRM 2711a 53 3.6.4 顆粒物質配置方法 54 3.6.5 顆粒物質萃取法 54 第4章 結果與討論 56 4.1 金黃色葡萄球菌的生長週期 56 4.2 不同培養液對金黃色葡萄球菌的生長影響 58 4.3 利用微液滴系統培養金黃色葡萄球菌 60 4.3.1 流道與孔盤尺寸分析 60 4.3.2 液滴尺寸控制 62 4.3.3 液滴蒸發測試 63 4.3.4 在微液滴中檢測金黃色葡萄球菌代謝力 65 4.4 顆粒物質與金黃色葡萄球菌的巨觀實驗 83 4.4.1 水相與油相成分對金黃色葡萄球菌代謝活性的影響 83 4.4.2 顆粒物質固體成分與全顆粒物質對金黃色葡萄球菌代謝活性的影響 85 4.4.3 巨觀實驗跟液滴實驗的比較 89 第5章 結論與未來研究展望 94 5.1 結論 94 5.2 未來展望 97 參考文獻 99

    1. Hueper, W., Environmental cancer hazards caused by industrial air pollution. Introductory comment to the discussion. Arch. Indust. Hyg. & Occupational Med., 1950. 2: p. 325-328.
    2. Ji, H. and G.K. Khurana Hershey, Genetic and epigenetic influence on the response to environmental particulate matter. Journal of Allergy and Clinical Immunology, 2012. 129(1): p. 33-41.
    3. Pérez, N., et al., Variability of particle number, black carbon, and PM10, PM2. 5, and PM1 levels and speciation: influence of road traffic emissions on urban air quality. Aerosol Science and Technology, 2010. 44(7): p. 487-499.
    4. Peng, R.D., et al., Coarse particulate matter air pollution and hospital admissions for cardiovascular and respiratory diseases among Medicare patients. Jama, 2008. 299(18): p. 2172-2179.
    5. Lo, W.-C., et al., Burden of disease attributable to ambient fine particulate matter exposure in Taiwan. Journal of the Formosan Medical Association, 2017. 116(1): p. 32-40.
    6. Burnett, R.T., et al., An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environmental health perspectives, 2014. 122(4): p. 397-403.
    7. Jones, K.C., et al., Increases in the polynuclear aromatic hydrocarbon content of an agricultural soil over the last century. Environmental Science & Technology, 1989. 23(1): p. 95-101.
    8. Rhodes, G., et al., Analysis of polyaromatic hydrocarbon mixtures with laser ionization gas chromatography/mass spectrometry. Analytical Chemistry, 1983. 55(2): p. 280-286.
    9. Zhu, L., et al., Pollution level, phase distribution and source analysis of polycyclic aromatic hydrocarbons in residential air in Hangzhou, China. Journal of Hazardous Materials, 2009. 162(2-3): p. 1165-1170.
    10. Ravindra, K., R. Sokhi, and R. Van Grieken, Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 2008. 42(13): p. 2895-2921.
    11. Suess, M.J., The environmental load and cycle of polycyclic aromatic hydrocarbons. Science of The Total Environment, 1976. 6(3): p. 239-250.
    12. Tolosa, I., J.M. Bayona, and J. Albaigés, Aliphatic and Polycyclic Aromatic Hydrocarbons and Sulfur/Oxygen Derivatives in Northwestern Mediterranean Sediments:  Spatial and Temporal Variability, Fluxes, and Budgets. Environmental Science & Technology, 1996. 30(8): p. 2495-2503.
    13. Zhang, Y. and S. Tao, Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmospheric Environment, 2009. 43(4): p. 812-819.
    14. Masih, A. and A. Taneja, Polycyclic aromatic hydrocarbons (PAHs) concentrations and related carcinogenic potencies in soil at a semi-arid region of India. Chemosphere, 2006. 65(3): p. 449-456.
    15. Cachada, A., et al., Levels, sources and potential human health risks of organic pollutants in urban soils. Science of The Total Environment, 2012. 430: p. 184-192.
    16. Balloy, V. and M. Chignard, The innate immune response to Aspergillus fumigatus. Microbes and Infection, 2009. 11(12): p. 919-927.
    17. Liu, H., et al., Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter. Environmental pollution, 2018. 233: p. 483-493.
    18. Pericone, C.D., et al., Inhibitory and bactericidal effects of hydrogen peroxide production by Streptococcus pneumoniae on other inhabitants of the upper respiratory tract. Infect Immun, 2000. 68(7): p. 3990-7.
    19. Ryan, K.J., Medical microbiology: An introduction to infectious diseases. 1984: Elsevier.
    20. Baron, S., Medical microbiology. 1986.
    21. Koch, R., Investigations into the etiology of traumatic infective diseases. Vol. 88. 1880: New Sydenham Society.
    22. Grice, E.A., et al., Topographical and temporal diversity of the human skin microbiome. science, 2009. 324(5931): p. 1190-1192.
    23. Grice, E.A. and J.A. Segre, The skin microbiome. Nature reviews microbiology, 2011. 9(4): p. 244-253.
    24. Haran, J.P., et al., Alzheimer’s disease microbiome is associated with dysregulation of the anti-inflammatory P-glycoprotein pathway. MBio, 2019. 10(3): p. e00632-19.
    25. Korpi, A., J. Järnberg, and A.-L. Pasanen, Microbial volatile organic compounds. Critical reviews in toxicology, 2009. 39(2): p. 139-193.
    26. Korpi, A., et al., Sensory irritating potency of some microbial volatile organic compounds (MVOCs) and a mixture of five MVOCs. Archives of Environmental Health: An International Journal, 1999. 54(5): p. 347-352.
    27. Elmassry, M.M. and B. Piechulla, Volatilomes of bacterial infections in humans. Frontiers in neuroscience, 2020. 14: p. 257.
    28. Sweeney, T.E. and J.M. Morton, The Human Gut Microbiome: A Review of the Effect of Obesity and Surgically Induced Weight Loss. JAMA Surgery, 2013. 148(6): p. 563-569.
    29. Doll, M., et al., Clostridioides difficile–Associated Diarrhea: Infection Prevention Unknowns and Evolving Risk Reduction Strategies. Current Infectious Disease Reports, 2019. 21(1): p. 1.
    30. Patel, M., et al., Faecal volatile biomarkers of Clostridium difficile infection. PloS one, 2019. 14(4): p. e0215256.
    31. Cogen, A., V. Nizet, and R. Gallo, Skin microbiota: a source of disease or defence? British Journal of Dermatology, 2008. 158(3): p. 442-455.
    32. Byrd, A.L., et al., Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Science translational medicine, 2017. 9(397).
    33. Williams, M.R. and R.L. Gallo, The role of the skin microbiome in atopic dermatitis. Current allergy and asthma reports, 2015. 15(11): p. 1-10.
    34. Arbuthnott, J.P., D.C. Coleman, and J.S. de Azavedo, Staphylococcal toxins in human disease. Soc Appl Bacteriol Symp Ser, 1990. 19: p. 101s-107s.
    35. Lacey, S., Clin. infect. dis. Clin. Infect. Dis, 1995. 20: p. 409.
    36. NOVICK, R.P., Pathogenicity factors and their regulation. Gram-positive pathogens, 1999: p. 392-407.
    37. Rubin, R.J., et al., The economic impact of Staphylococcus aureus infection in New York City hospitals. Emerging infectious diseases, 1999. 5(1): p. 9-17.
    38. Lautenschlager, S., C. Herzog, and W. Zimmerli, Course and outcome of bacteremia due to Staphylococcus aureus: evaluation of different clinical case definitions. Clinical Infectious Diseases, 1993. 16(4): p. 567-573.
    39. Espersen, F., Identifying the patient risk for Staphylococcus aureus bloodstream infections. Journal of Chemotherapy (Florence, Italy), 1995. 7: p. 11-17.
    40. Muder, R.R., et al., Bacteremia in a long-term-care facility: a five-year prospective study of 163 consecutive episodes. Clinical infectious diseases, 1992. 14(3): p. 647-654.
    41. Control, C.f.D. and Prevention, National Nosocomial Infection Surveillance System report: data summary from October 1986-April 1996. Atlanta (GA): US Department of Health and Human Services, 1996.
    42. Mandell, G.L., J.E. Bennett, and R. Dolin, Mandell, Douglas and Bennett's principles and pratice of infections diseases, in Mandell, Douglas and Bennett's principles and pratice of infections diseases. 1995. p. [2916]-[2916].
    43. Lavery, L.A., et al., Microbiology of osteomyelitis in diabetic foot infections. The Journal of foot and ankle surgery, 1995. 34(1): p. 61-64.
    44. Isselbacher, K.J., et al., Harrison's principles of internal medicine. 1987: McGraw-Hill.
    45. Vargas Buonfiglio Luis, G., et al., Effects of Coal Fly Ash Particulate Matter on the Antimicrobial Activity of Airway Surface Liquid. Environmental Health Perspectives. 125(7): p. 077003.
    46. Rivas-Santiago César, E., et al., Air Pollution Particulate Matter Alters Antimycobacterial Respiratory Epithelium Innate Immunity. Infection and Immunity, 2015. 83(6): p. 2507-2517.
    47. Stapleton, E.M., et al., Indoor Particulate Matter From Smoker Homes Induces Bacterial Growth, Biofilm Formation, and Impairs Airway Antimicrobial Activity. A Pilot Study. Frontiers in Public Health, 2020. 7(418).
    48. Woo, S.H., et al., Effects of fine particulate matter on Pseudomonas aeruginosa adhesion and biofilm formation in vitro. BioMed research international, 2018. 2018.
    49. Le, H.P., Progress and trends in ink-jet printing technology. Journal of Imaging Science and Technology, 1998. 42(1): p. 49-62.
    50. Kaminski, T.S. and P. Garstecki, Controlled droplet microfluidic systems for multistep chemical and biological assays. Chemical Society Reviews, 2017. 46(20): p. 6210-6226.
    51. Agresti, J.J., et al., Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proceedings of the National Academy of Sciences, 2010. 107(9): p. 4004-4009.
    52. Thorsen, T., et al., Dynamic pattern formation in a vesicle-generating microfluidic device. Physical review letters, 2001. 86(18): p. 4163.
    53. Ju, M., et al., Preparation of ultrafine carbon spheres by controlled polymerization of furfuryl alcohol in microdroplets. Industrial & Engineering Chemistry Research, 2014. 53(8): p. 3084-3090.
    54. Yang, Y., et al., Fabrication and luminescence of BiPO4: Tb3+/Ce3+ nanofibers by electrospinning. Superlattices and Microstructures, 2016. 90: p. 227-235.
    55. Men, D., et al., Seeding-induced self-assembling protein nanowires dramatically increase the sensitivity of immunoassays. Nano letters, 2009. 9(6): p. 2246-2250.
    56. Bezerra, H.G., et al., Intracoronary optical coherence tomography: a comprehensive review: clinical and research applications. JACC: Cardiovascular Interventions, 2009. 2(11): p. 1035-1046.
    57. Schubert, H. and H.P. Schuchmann, Gabriela G. Badolato, Barbara Freudig, Ping Idda, Uwe Lambrich. Monitoring and Visualizing Membrane-Based Processes, 2009: p. 283.
    58. Wang, L., et al., Quantification of nanomaterial/nanomedicine trafficking in vivo. Anal. Chem, 2018. 90(1): p. 589-614.
    59. Wang, C.-J., et al., ent-Abietane and tigliane diterpenoids from the roots of Euphorbia fischeriana and their inhibitory effects against Mycobacterium smegmatis. Journal of natural products, 2017. 80(5): p. 1248-1254.
    60. Zheng, B. and R.F. Ismagilov, A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three‐phase liquid/liquid/gas flow. Angewandte Chemie International Edition, 2005. 44(17): p. 2520-2523.
    61. Günther, A., et al., Transport and reaction in microscale segmented gas–liquid flow. Lab on a Chip, 2004. 4(4): p. 278-286.
    62. De Menech, M., et al., Transition from squeezing to dripping in a microfluidic T-shaped junction. journal of fluid mechanics, 2008. 595: p. 141-161.
    63. Gu, Z. and J.-L. Liow. Micro-droplet formation with non-Newtonian solutions in microfluidic T-junctions with different inlet angles. in 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). 2012. IEEE.
    64. Utada, A.S., et al., Dripping to jetting transitions in coflowing liquid streams. Physical review letters, 2007. 99(9): p. 094502.
    65. Cramer, C., P. Fischer, and E.J. Windhab, Drop formation in a co-flowing ambient fluid. Chemical Engineering Science, 2004. 59(15): p. 3045-3058.
    66. Anna, S.L. and H.C. Mayer, Microscale tipstreaming in a microfluidic flow focusing device. Physics of fluids, 2006. 18(12): p. 121512.
    67. Wu, P., et al., Drag-induced breakup mechanism for droplet generation in dripping within flow focusing microfluidics. Chinese Journal of Chemical Engineering, 2015. 23(1): p. 7-14.
    68. Lashkaripour, A., et al., Performance tuning of microfluidic flow-focusing droplet generators. Lab on a Chip, 2019. 19(6): p. 1041-1053.
    69. Zhu, P. and L. Wang, Passive and active droplet generation with microfluidics: a review. Lab on a Chip, 2017. 17(1): p. 34-75.
    70. Wennerström, H., J. Balogh, and U. Olsson, Interfacial tensions in microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006. 291(1-3): p. 69-77.
    71. Anna, S.L., N. Bontoux, and H.A. Stone, Formation of dispersions using “flow focusing” in microchannels. Applied Physics Letters, 2003. 82(3): p. 364-366.
    72. Oishi, M., et al. Confocal micro-PIV measurement of droplet formation in a T-shaped micro-junction. in Journal of Physics: Conference Series. 2009. IOP Publishing.
    73. Cottinet, D., et al., Lineage tracking for probing heritable phenotypes at single-cell resolution. PloS one, 2016. 11(4): p. e0152395.
    74. Leung, K., et al., A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proceedings of the National Academy of Sciences, 2012. 109(20): p. 7665-7670.
    75. Jakiela, S., et al., Bacterial growth and adaptation in microdroplet chemostats. Angewandte Chemie, 2013. 125(34): p. 9076-9079.
    76. Pacocha, N., et al., High-Throughput Monitoring of Bacterial Cell Density in Nanoliter Droplets: Label-Free Detection of Unmodified Gram-Positive and Gram-Negative Bacteria. Analytical Chemistry, 2021. 93(2): p. 843-850.
    77. Yu, J., et al., Droplet optofluidic imaging for λ-bacteriophage detection via co-culture with host cell Escherichia coli. Lab on a Chip, 2014. 14(18): p. 3519-3524.
    78. Schmitz, C.H., et al., Dropspots: a picoliter array in a microfluidic device. Lab on a Chip, 2009. 9(1): p. 44-49.
    79. Shimamori, Y., et al., Staphylococcal Phage in Combination with Staphylococcus epidermidis as a Potential Treatment for Staphylococcus aureus-Associated Atopic Dermatitis and Suppressor of Phage-Resistant Mutants. Viruses, 2021. 13(1): p. 7.
    80. Voytik-Harbin, S.L., et al., Application and evaluation of the alamarBlue assay for cell growth and survival of fibroblasts. In Vitro Cellular & Developmental Biology-Animal, 1998. 34(3): p. 239-246.
    81. Mackay, D. and W.Y. Shiu, Aqueous solubility of polynuclear aromatic hydrocarbons. Journal of Chemical & Engineering Data, 1977. 22(4): p. 399-402.
    82. Kumar, A., et al., Isolation and identification of naphthalene degradation bacteria. Intern. J. Inn. Sci. Res. Technol, 2018. 3: p. 682-688.
    83. Wang, W., et al., Polycyclic Aromatic Hydrocarbon (PAH) Degradation Pathways of the Obligate Marine PAH Degrader Cycloclasticus sp. Strain P1. Applied and Environmental Microbiology. 84(21): p. e01261-18.
    84. Igwo-Ezikpe, M., et al., Prevalence of polycyclic aromatic hydrocarbons (PAHs) degrading bacteria in contaminated tropical soil in Lagos, Nigeria: involvement of plasmid in degradation. International Journal of Biological and Chemical Sciences, 2011. 4.
    85. Sepic, E., M. Bricelj, and H. Leskovsek, Biodegradation studies of polyaromatic hydrocarbons in aqueous media. J Appl Microbiol, 1997. 83(5): p. 561-8.
    86. Joyce Gay, H. and C. White David, Effect of Benzo(a)pyrene and Piperonyl Butoxide on Formation of Respiratory System, Phospholipids, and Carotenoids of Staphylococcus aureus. Journal of Bacteriology, 1971. 106(2): p. 403-411.
    87. Jiang, S.Y.N., et al., Water solubility of metals in coarse PM and PM2.5 in typical urban environment in Hong Kong. Atmospheric Pollution Research, 2014. 5(2): p. 236-244.
    88. Kawakami, H., et al., Antibacterial Properties of Metallic Elements for Alloying Evaluated with Application of JIS Z 2801:2000. ISIJ International, 2008. 48(9): p. 1299-1304.
    89. Wong Fok Lung, T. and A. Prince, Consequences of Metabolic Interactions during Staphylococcus aureus Infection. Toxins, 2020. 12(9).
    90. Peters Brian, M., et al., Efficacy of Ethanol against Candida albicans and Staphylococcus aureus Polymicrobial Biofilms. Antimicrobial Agents and Chemotherapy, 2013. 57(1): p. 74-82.

    QR CODE