簡易檢索 / 詳目顯示

研究生: 葉致成
Yeh, Chih-Cheng
論文名稱: 鑽石針尖陣列場發射遮蔽效應之研究
Screening Effects Study on Field Emission Characteristics of Diamond Nano-tip Array
指導教授: 蔡宏營
Tsai, Hung-Yin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 114
中文關鍵詞: 硬陽極氧化鋁熱燈絲化學氣相沉積法鑽石針尖陣列場發射遮蔽效應
外文關鍵詞: AAO, HFCVD, Diamond tip array, Field emission, Screeing effect
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要以熱燈絲化學氣相沉積法輔以自製硬陽極氧化鋁模板,製作規則鑽石奈米針尖陣列,並且藉由不同的模板,調整針尖間距,量測其場發射特性,討論是否有遮蔽效應存在。過程中以掃描式電子顯微鏡檢測檢測試片表面形貌、拉曼光譜儀檢測鑽石特性及以場發射量測儀檢測鑽石針尖陣列場發射性質。
    特別的地方在於,本研究首創利用硬陽極氧化鋁板之阻障層成長鑽石針尖陣列,相較於以孔洞陣列製作出的結構,高度與規則度更為一致。由於鑽石難以於氧化鋁模板上成核成長,研究中配合以聚乙烯亞胺附著鑽石粉末之輔助成核方法,成功地製作出創新三角錐形針尖,其尖端半徑為15~30奈米,高度約為100~200奈米,針尖間距介於50~300奈米之間。
    最後的場發射量測結果顯示,本研究所製作的創新三角錐形鑽石針尖結構,針尖間距與高度比於0.25~1的時候,有最佳的場發射起始電場(5.4 V/μm),其最大場發射電流密度值為8.4 μA/cm2,並且證實在此種結構下能避免過去奈米碳管研究所無法避免的場遮蔽效應。


    Screening effect of field emission on the diamond nano-tip array with different pitches is investigated. The diamond nano-tip arrays are formed by hot-filament chemical vapor deposition (HFCVD) on aluminum oxide (AAO) template. The AAO template is fabricated by hard anodization. Compared with moderate anodization, there are many advantages for using hard anodization, such as fast growing and high regularity. The nano diamond particles are adhered onto the AAO template by Polyethylenimine pretreatment to increase the nucleation density of diamond. The diamond film is then deposited on the barrier layer of AAO template by HFCVD method. The diamond tips array is developed after removal of AAO template by wet chemical etching. The field emission effect with different nano-tip arrays are measured by field emission meter. The morphology and quality of diamond nano-tip array are examined by scanning electron microscopy (SEM) and Raman spectroscopy, respectively. The innovative triangular pyramidal structures are obtained successfully with tip radius of about 15 nm-30 nm, and height of 100 nm-200 nm at different pitches from 50 nm to 300 nm. As a result, the lowest turn-on voltage of 5.4 V/μm and highest field emission current density of 8.4 μA/cm2 can be obtained at the smallest pitch- height ratio of 0.25-1 without screening effect in the current study.

    論文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 第一章 前言 1 第二章 文獻回顧 5 2.1場發射效應 5 2.1.1基本場發射理論 5 2.1.2發射端尺寸效應 7 2.1.3場發射遮蔽效應 10 2.2鑽石場發射針尖陣列製作 16 2.2.1直接蝕刻法 16 2.2.2鑽石塗層法 18 2.2.3模造法 20 2.3陽極氧化鋁 23 2.3.1陽極氧化鋁結構 23 2.3.2陽極氧化鋁形成機制 25 2.3.3結構製作 27 2.3.4二次陽極處理 29 2.3.5硬陽極處理 30 2.4化學氣相沉積鑽石薄膜法 36 2.4.1人工合成鑽石歷史 36 2.4.2 化學氣相沉積鑽石薄膜原理 38 2.4.3 各式化學氣相沉積法簡介 41 2.5輔助鑽石成核方法 44 2.6研究動機與目的 49 第三章 實驗儀器與製程 51 3.1 實驗流程 51 3.2 實驗藥品與氣體 52 3.3 硬陽極氧化鋁模板製作 53 3.3.1 硬陽極處理設備 53 3.3.2 電拋光處理 56 3.3.3 實驗步驟 58 3.4 鑽石顆粒輔助成核 60 3.4.1 電泳沉積法 60 3.4.2 Polyethylenimine(PEI)附著法 61 3.5 鑽石薄膜沉積 63 3.5.1 熱燈絲化學氣相沉積設備 63 3.5.2 燈絲碳化 67 3.5.3 實驗步驟 69 3.6 移除陽極氧化鋁模板 70 3.7 檢測儀器 71 3.7.1 掃描電子顯微鏡 71 3.7.2 拉曼光譜儀 72 3.7.3 場發射量測儀 74 第四章 硬陽極處理實驗與討論 76 4.1 草酸硬陽極處理 77 4.1.1 定電壓法 77 4.1.2 定電流法 83 4.2 硫酸硬陽極處理 87 4.3 移除阻障層 90 第五章 鑽石針尖陣列製作與討論 92 5.1 鑽石前處理方法比較 92 5.2 不同間距之針尖陣列製作 96 5.3 鑽石針尖陣列場發射遮蔽效應討論 103 第六章 結論與未來展望 106 參考文獻 109

    [1] K. E. Spear and J. P. Dismukes, Synthetic diamond: emerging CVD science and technology: Wiley, 1994.
    [2] R. H. Fowler and L. Nordheim, "Electron Emission in Intense Electric Fields," Proceedings of the Royal Society of London. Series A, vol. 119, pp. 173-181, 1928.
    [3] N. M. Miskovsky, et al., "Energy exchange processes in field emission from atomically sharp metallic emitters," in Fifth international vacuum microelectronic conference, Vienna (Austria), 1993, pp. 366-370.
    [4] M. S. Chung, et al., "Energy exchange processes in electron emission at high fields and temperatures," in International vacuum microelectronics conference, Newport, Rhode Island (USA), 1994, pp. 727-736.
    [5] T. S. Fisher and D. G. Walker, "Thermal and Electrical Energy Transport and Conversion in Nanoscale Electron Field Emission Processes," Journal of Heat Transfer, vol. 124, pp. 954-962, 2002.
    [6] T. S. Fisher and D. G. Walker, "Analysis and simulation of anode heating from electron field emission," in Thermal and Thermomechanical Phenomena in Electronic Systems, 2002. ITHERM 2002. The Eighth Intersociety Conference on, 2002, pp. 1075-1082.
    [7] J. He, et al., "Generalization of Fowler--Nordheim field emission theory for nonplanar metal emitters," Applied Physics Letters, vol. 59, pp. 1644-1646, 1991.
    [8] K. L. Jensen and E. G. Zaidman, "Field emission from an elliptical boss: Exact versus approximate treatments," Applied Physics Letters, vol. 63, p. 702, 1993.
    [9] K. L. Jensen and E. G. Zaidman, "Field emission from an elliptical boss: Exact and approximate forms for area factors and currents," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 12, p. 776, 1994.
    [10] K. L. Jensen and E. G. Zaidman, "Analytic expressions for emission in sharp field emitter diodes," Journal of Applied Physics, vol. 77, pp. 3569-3571, 1995.
    [11] T. S. Fisher, "Influence of nanoscale geometry on the thermodynamics of electron field emission," Applied Physics Letters, vol. 79, p. 3699, 2001.
    [12] L. Nilsson, et al., "Scanning field emission from patterned carbon nanotube films," Applied Physics Letters, vol. 76, pp. 2071-2073, 2000.
    [13] J. S. Suh, et al., "Study of the field-screening effect of highly ordered carbon nanotube arrays," Applied Physics Letters, vol. 80, pp. 2392-2394, 2002.
    [14] R. C. Smith and S. R. P. Silva, "Maximizing the electron field emission performance of carbon nanotube arrays," Applied Physics Letters, vol. 94, pp. 133104-3, 2009.
    [15] Y. Nishibayashi, et al., "Anisotropic etching of a fine column on a single crystal diamond," Diamond and Related Materials, vol. 10, pp. 1732-1735, 2001.
    [16] W. J. Zhang, et al., "Oriented single-crystal diamond cones and their arrays," Applied Physics Letters, vol. 82, pp. 2622-2624, 2003.
    [17] W. J. Zhang, et al., "Structuring single- and nano-crystalline diamond cones," Diamond and Related Materials, vol. 13, pp. 1037-1043, 2004.
    [18] N. S. Xu, et al., "Enhancing electron emission from silicon tip arrays by using thin amorphous diamond coating," Applied Physics Letters, vol. 73, pp. 3668-3670, 1998.
    [19] A. P. Malshe, et al., "A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substrates," Diamond and Related Materials, vol. 8, pp. 1198-1213, 1999.
    [20] V. Raiko, et al., "Field emission observations from CVD diamond-coated silicon emitters," Thin Solid Films, vol. 290-291, pp. 190-195, 1996.
    [21] M. Hajra, et al., "Field emission characterization of silicon tip arrays coated with GaN and diamond nanoparticle clusters," in Papers from the 14th International Vacuum Microelectronics Conference, Davis, California (USA), 2003, pp. 458-463.
    [22] S. Albin, et al., "Diamond coated silicon field emitter array," in Papers from the 45th National Symposium of the American Vacuum Society, Baltimore, Maryland (USA), 1999, pp. 2104-2108.
    [23] V. V. Zhirnov, et al., "Characterization of field emission cathodes with different forms of diamond coatings," in Papers from the 11th international vacuum microelectronics conference, Asheville, North Carolina (USA), 1999, pp. 666-669.
    [24] K. Okano, et al., "Fabrication of a diamond field emitter array," Applied Physics Letters, vol. 64, pp. 2742-2744, 1994.
    [25] W. P. Kang, et al., "Micropatterned polycrystalline diamond field emitter vacuum diode arrays," in The eighth international vacuum microelectronics conference, Portland, Oregon (USA), 1996, pp. 2068-2071.
    [26] R. S. Takalkar, et al., "Edge-shaped diamond field emission arrays," Journal of Vacuum Science and Technology B, vol. 23, pp. 800-804, 2005.
    [27] Z. Wang, et al., "A novel method for making high aspect ratio solid diamond tips," Microelectronic Engineering, vol. 78-79, pp. 353-358, 2005.
    [28] Z. L. Wang, et al., "The high aspect ratio conical diamond tips arrays and their field emission properties," Diamond and Related Materials, vol. 15, pp. 631-634, 2006.
    [29] F. Keller, et al., "Structural Features of Oxide Coatings on Aluminum," Journal of The Electrochemical Society, vol. 100, pp. 411-419, 1953.
    [30] G. C. Wood, et al., "The Direct Observation of Barrier Layers in Porous Anodic Oxide Films," Journal of The Electrochemical Society, vol. 115, pp. 618-620, 1968.
    [31] H. Masuda, et al., "Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution," Journal of The Electrochemical Society, vol. 144, pp. L127-L130, 1997.
    [32] O. Jessensky, et al., "Self-organized formation of hexagonal pore arrays in anodic alumina," Applied Physics Letters, vol. 72, pp. 1173-1175, 1998.
    [33] V. P. Parkhutik and V. I. Shershulsky, "Theoretical modelling of porous oxide growth on aluminium," Journal of Physics D: Applied Physics, vol. 25, pp. 1258-1263, 1992.
    [34] G. E. Thompson, "Porous anodic alumina: fabrication, characterization and applications," Thin Solid Films, vol. 297 pp. 192-201, 1997.
    [35] S. K. Thamida and H.-C. Chang, "Nanoscale pore formation dynamics during aluminum anodization," Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 12, pp. 240-251, 2002.
    [36] S. Shingubara, et al., "Ordered Two-Dimensional Nanowire Array Formation Using Self-Organized Nanoholes of Anodically Oxidized Aluminum," Japanese Journal of Applied Physics, vol. 36, p. 7791, 1997.
    [37] S. Ono, et al., "Controlling Factor of Self-Ordering of Anodic Porous Alumina," Journal of The Electrochemical Society, vol. 151, pp. B473-B478, 2004.
    [38] H. Masuda and K. Fukuda, "Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina," Science, vol. 268, pp. 1466-1468, 1995.
    [39] F. Nasirpouri, et al., "A comparison between self-ordering of nanopores in aluminium oxide films achieved by two- and three-step anodic oxidation," Current Applied Physics, vol. 9, pp. S91-S94, 2009.
    [40] S. Shingubara, et al., "Self-Organization of a Porous Alumina Nanohole Array Using a Sulfuric/Oxalic Acid Mixture as Electrolyte," Electrochemical and Solid-State Letters, vol. 7, pp. E15-E17, 2004.
    [41] S. Z. Chu, et al., "Fabrication of Ideally Ordered Nanoporous Alumina Films and Integrated Alumina Nanotubule Arrays by High-Field Anodization," Advanced Materials, vol. 17, pp. 2115-2119, 2005.
    [42] W. Lee, et al., "Fast fabrication of long-range ordered porous alumina membranes by hard anodization," Nat Mater, vol. 5, pp. 741-747, 2006.
    [43] Y. Li, et al., "Fabrication of highly ordered nanoporous alumina films by stable high-field anodization," Nanotechnology, vol. 17, pp. 5101-5105, 2006.
    [44] Y. B. Li, et al., "High-speed growth and photoluminescence of porous anodic alumina films with controllable interpore distances over a large range," Applied Physics Letters, vol. 91, pp. 073109-3, 2007.
    [45] D. Li, et al., "Investigation on highly ordered porous anodic alumina membranes formed by high electric field anodization," Materials Chemistry and Physics, vol. 111, pp. 168-171, 2008.
    [46] W. G. Eversole, US Patent 3030187,3030188, 1958.
    [47] J. C. Angus, et al., "Growth of Diamond Seed Crystals by Vapor Deposition," Journal of Applied Physics, vol. 39, pp. 2915-2922, 1968.
    [48] B. V. Deryagin, et al., Dokl. Akad. Nauk. SSSR, vol. 231, p. 333, 1976.
    [49] P. K. Bachmann and R. Messier, in Chemical & Engineering News, ed, 1989.
    [50] P. E. Pehresson, et al., Diamond Films And Coatings,edited by R. F. Davis, 1993.
    [51] R. Kern, et al., Current Topics in Material Science vol. 3, 1979.
    [52] H. Liu and D. S. Dandy, Diamond Chemical Vapor Deposition:Nucleation and Early Growth Stages, 1995.
    [53] O. Ternyak, et al., "Evolution and properties of adherent diamond films with ultra high nucleation density deposited onto alumina," Diamond and Related Materials, vol. 14, pp. 144-154, 2005.
    [54] Y. C. Chen, et al., "Characteristics of ultra-nano-crystalline diamond films grown on the porous anodic alumina template," Diamond and Related Materials, vol. 15, pp. 324-328, 2006.
    [55] T. Tsubota, et al., "CVD diamond coating on WC-Co cutting tool using ECR MPCVD apparatus via electrophoretic seeding pretreatment," Surface and Coatings Technology, vol. 169-170, pp. 262-265, 2003.
    [56] C.-H. Tsai, et al., "Fabrication of diamond Schottky emitter array by using electrophoresis pre-treatment and hot-filament chemical vapor deposition," Diamond and Related Materials, vol. 16, pp. 1398-1402, 2007.
    [57] J. J. Adair and R. K. Singh, "Enhanced chemical vapor deposition of diamond and related materials," US Patent, 1996.
    [58] D. Gilbert, et al., "Deposition of diamond from alcohol precursors in an electron cyclotron resonance plasma system," Journal of Electronic Materials, vol. 26, pp. 1326-1330, 1997.
    [59] E. Zeiler, et al., "Structural changes of tungsten heating filaments during CVD of diamond," Materials Science and Engineering A, vol. 335, pp. 236-245, 2002.
    [60] L. S. Pan and D. R. Kania, Diamond: electronic properties and applications: Kluwer Academic Publishers, 1995.
    [61] Z. F. Zhou, et al., "Growth of the nickel nanorod arrays fabricated using electrochemical deposition on anodized Al templates," Materials Letters, vol. 62, pp. 3419-3421, 2008.
    [62] H. Masuda and M. Satoh, "Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask," Japanese Journal of Applied Physics, vol. 35, p. L126, 1996.
    [63] K. Schwirn, et al., "Self-Ordered Anodic Aluminum Oxide Formed by H2SO4 Hard Anodization," ACS Nano, vol. 2, pp. 302-310, 2008.
    [64] Q. W. Sun, et al., "Tip-like anodic alumina," Nanotechnology, vol. 18, p. 215304, 2007.
    [65] T. Aerts, et al., "Study of initiation and development of local burning phenomena during anodizing of aluminium under controlled convection," Electrochimica Acta, vol. 54, pp. 270-279, 2008.
    [66] I. Vrublevsky, et al., "Study of chemical dissolution of the barrier oxide layer of porous alumina films formed in oxalic acid using a re-anodizing technique," Applied Surface Science, vol. 236, pp. 270-277, 2004.
    [67] G. W. Bak, et al., "Investigation of biaxial stresses in diamond films deposited on a silicon substrate by the HF CVD method," Optical Materials, vol. 30, pp. 770-773, 2008.
    [68] Q. Hu, et al., "Electrons diffusion study on the nitrogen-doped nanocrystalline diamond film grown by MPECVD method," Applied Surface Science, vol. 256, pp. 6233-6236, 2010.
    [69] R. J. Nemanich, et al., "Raman scattering characterization of carbon bonding in diamond and diamondlike thin films," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 6, pp. 1783-1787, 1988.
    [70] L. Luo, et al., "Field emission from GaN nanobelts with herringbone morphology," Materials Letters, vol. 58, pp. 2893-2896, 2004.
    [71] P. R. Somani, et al., "Field electron emission of double walled carbon nanotube film prepared by drop casting method," Solid-State Electronics, vol. 51, pp. 788-792, 2007.
    [72] W. Bai, et al., "Synthesis of zinc oxide nanosheet thin films and their improved field emission and photoluminescence properties by annealing processing," Applied Surface Science, vol. 254, pp. 6483-6488, 2008.
    [73] R. N. Gayen and A. K. Pal, "Growth of carbon nanofibers on aligned zinc oxide nanorods and their field emission properties," Applied Surface Science, vol. 256, pp. 6172-6178, 2010.
    [74] T. Wang, et al., "Field emission property of copper nitride thin film deposited by reactive magnetron sputtering," Applied Surface Science, vol. 254, pp. 6817-6819, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE