研究生: |
郭彥廷 Kuo, Yen-Ting |
---|---|
論文名稱: |
鋰原子D1譜線超精細結構和同位素偏移的精密量測 Precision Measurement of Hyperfine Intervals and Isotope Shift of D1 lines of Atomic Lithium |
指導教授: |
王立邦
Wang, Li-Bang |
口試委員: |
劉怡維
Liu, Yi-Wei 崔祥辰 Chui, Hsiang-Chen |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 42 |
中文關鍵詞: | 光譜 、鋰 、超精細結構 |
外文關鍵詞: | spectroscopy, lithium, hyperfine structure |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們使用交叉原子束法測量鋰原子6,7Li的D1譜線的超精細結構和同位素偏移。我們的光譜雷射是波長為670.9 nm的外腔式二極體雷射,並將雷射用Pound-Drever-Hall技術穩頻在Fabry-Perot干涉共振腔上,並且藉由改變共振腔腔長掃描鋰原子光譜。參考頻率雷射則是鎖在碘分子的譜線上。利用光電倍增管偵測雷射激發的原子螢光訊號,並記錄光譜雷射和參考雷射的拍頻做為訊號的頻率。
我們的實驗結果6,7Li在基態2S1/2的超精細結構分裂為228.198 (12) MHz和 803.495 (8) MHz,在第一激發態2P1/2超精細結構分裂為26.108 (9) MHz和 91.873 (5) MHz。而6,7Li 之間的同位素偏移為10533.800 (15) MHz。我們的量測釐清了不同團隊量測結果的爭議,並且與大部分的理論預測相符。
We have precisely measured the hyperfine intervals and isotope shift of D1 lines of atomic lithium 6,7Li in a collimated atomic beam. The spectroscopy laser, an external-cavity diode laser (ECDL) with wavelength 670.9 nm, which is locked to a Fabry-Perot cavity by Pound-Drever-Hall technique, scans the spectrums by changing the cavity length. The reference laser is locked to molecular iodine transition. The laser-induced fluorescence signal is detected by photomultiplier, and the beat frequency between spectroscopy laser and reference laser is recorded.
The results of 6,7Li for 2S1/2 hyperfine interval are 228.198 (12) MHz and 803.495(8) MHz. For 2P1/2 hyperfine interval, they are 26.108(9) MHz and 91.873(5) MHz. The isotope shift is 10533.800(15) MHz. Our results resolve the discrepancies between former measurements, and are consistent with most theoretical calculations.
[1] Walls, J., et al., Measurement of isotope shifts, fine and hyperfine structure splittings of the lithium D lines. The European Physical Journal D, 2003. 22(2): p. 159-162.
[2] Noble, G., et al., Isotope shifts and fine structures of 6,7Li D lines and determination of the relative nuclear charge radius. Physical Review A, 2006. 74(1): p. 012502.
[3] Das, D. and V. Natarajan, Absolute frequency measurement of the lithium D lines: Precise determination of isotope shifts and fine-structure intervals. Physical Review A, 2007. 75(5): p. 052508.
[4] Das, D. and V. Natarajan, High-precision measurement of hyperfine structure in the D lines of alkali atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008. 41(3): p. 035001.
[5] Sansonetti, C., et al., Absolute Transition Frequencies and Quantum Interference in a Frequency Comb Based Measurement of the 6,7Li D Lines. Physical Review Letters, 2011. 107(2): p. 023001.
[6] Yerokhin, V., Hyperfine structure of Li and Be+. Physical Review A, 2008. 78(1): p. 012513.
[7] Puchalski, M. and K. Pachucki, Fine and hyperfine splitting of the 2P state in Li and Be+. Physical Review A, 2009. 79(3): p. 032510.
[8] Orth, H., H. Ackermann, and E. Otten, Fine and Hyperfine Structure of the 2 2P Term of 7Li; Determination of the Nuclear Quadrupole Moment. Z. Physik A, 1975. 273(3): p. 221-232.
[9] Singh, A., L. Muanzuala, and V. Natarajan, Precise measurement of hyperfine structure in the 2P1/2 state of 7Li using saturated-absorption spectroscopy. Physical Review A, 2010. 82(4): p. 042504.
[10] Huang, Y., et al., Precision measurement of hyperfine intervals in the D1 lines of atomic 7Li. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013. 46(7): p. 075004.
[11] Sansonetti, C., et al., Measurements of the resonance lines of 6Li and 7Li by Doppler-free frequency-modulation spectroscopy. Physical Review A, 1995. 52(4): p. 2682-2688.
[12] Scherf, W., et al., Re-measurement of the transition frequencies, fine structure splitting and isotope shift of the resonance lines of lithium, sodium and potassium. Z. Physik, 1996 36(1): p. 31-33.
[13] Shankar, R., Principles of Quantum Mechanics. 1994: Plenum Press.
[14] Metcalf, H. and P. Straten, Laser Cooling and Trapping. 1999: Springer.
[15] Foot, C., Atomic Physics. 2005: Oxford University Press.
[16] Puchalski, M., D. Kędziera, and K. Pachucki, D1and D2 lines in 6Li and 7Li including QED effects. Physical Review A, 2013. 87(3): p. 032503.
[17] Demtröder, W., Laser Spectroscopy. Forth ed. Vol. 2. 2008: Springer.
[18] Beckmann, A., K. Boklen, and D. Elke, Precision Measurements of the Nuclear Magnetic Dipole Moments of 6Li, 7Li, 23Na, 39K and 41K. Z. Physik, 1974. 270(3): p. 173-186.
[19] De Jager, C.W., H. De Vries, and C. De Vries, Nuclear charge- and magnetization-density-distribution parameters from elastic electron scattering. Atomic Data and Nuclear Data Tables, 1974. 14(5–6): p. 479-508.
[20] Riis, E., et al., Lamb shifts and hyperfine structure in 6Li+ and 7Li+: Theory and experiment. Physical Review A, 1994. 49(1): p. 207-220.
[21] Windholz, L., et al., Laser-spectroscopic investigations of the lithium-D-lines in magnetic fields. Zeitschrift für Physik D Atoms, Molecules and Clusters, 1990. 16(1): p. 41-47.
[22] Bushaw, B., et al., Hyperfine splitting, isotope Shift, and level energy of the 3S States of 6,7Li. Physical Review Letters, 2003. 91(4): p. 043004.
[23] Brown, R., et al., Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the 6,7Li D2 lines. Physical Review A, 2013. 87(3): p. 032504.
[24] Ewald, G., et al., Nuclear Charge Radii of 8,9Li Determined by Laser Spectroscopy. Physical Review Letters, 2004. 93(11): p. 113002.
[25] Sánchez, R., et al., Nuclear Charge Radii of 9,11Li: The Influence of Halo Neutrons. Physical Review Letters, 2006. 96(3): p. 033002.
[26] Sánchez, R., et al., Absolute frequency measurements on the 2S→3S transition of lithium-6,7. New Journal of Physics, 2009. 11(7): p. 073016.
[27] Nörtershäuser, W., et al., Isotope-shift measurements of stable and short-lived lithium isotopes for nuclear-charge-radii determination. Physical Review A, 2011. 83(1): p. 012516.
[28] Lien, Y., et al., Absolute frequencies of the 6,7Li 2S 2S1/2→3S 2S1/2 transitions. Physical Review A, 2011. 84(4): p. 042511.