研究生: |
范丞佑 FAN, Cheng-You |
---|---|
論文名稱: |
基於Transformer模型用於預測糾纏二分量子系統之近似 Transformer-Based Model for Predicting the Approximation to the Entangled Bipartite Quantum System |
指導教授: |
陳人豪
Chen, Jen-Hao |
口試委員: |
李金龍
Li, Chin-Lung 陳仁純 Chen, Ren-Chuen |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 計算與建模科學研究所 Institute of Computational and Modeling Science |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 25 |
中文關鍵詞: | 注意力機制 、人工智慧 、量子糾纏 、量子系統 |
外文關鍵詞: | Transformer, Artificial Intelligence, Quantum Entanglement, Quantum system |
相關次數: | 點閱:61 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討將Transformer模型用於預測糾纏二分量子之近似。量子糾纏是一種基本且重要的量子力學現象,其特性使得量子計算機在某些特定問題上具有高效的計算效率。本研究旨在通過訓練深度學習模型來分解量子密度矩陣,從而縮短計算時間。本研究結果表明,雖然Transformer模型在訓練集上的表現令人滿意,但在測試集上的表現仍有待提高。研究結果和方法對於未來量子計算的應用具有重要意義。
This study mainly explores the application of the Transformer model for predicting the approximation of entangled bipartite quantum systems. Quantum entanglement is a fundamental and significant phenomenon in quantum mechanics, whose properties enable quantum computers to achieve efficient computational performance on certain specific problems. This research aims to decompose quantum density matrices by training a deep learning model, thereby reducing computation time. The results indicate that the Transformer model performs satisfactorily on the training set. However, the performance on the test set still needs improvement. The findings and methods of this research hold significant implications for future applications in quantum computing.
[1] N. Zou, "Quantum Entanglement and Its Application in Quantum Communication", (2021).
[2] R. L. Burden and J. D. Faires, Numerical Analysis, 8th ed., Belmont, CA: Thomson Brooks/Cole, (2005).
[3] W. Ertel, Introduction to Artificial Intelligence, Springer, (2018).
[4] K. Gurney, An Introduction to Neural Networks, CRC Press, (1997).
[5] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah, "Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions", Journal of Big Data, (2021).
[6] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, "A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects", IEEE, (2021).
[7] J. Lederer, et al., "Activation Functions in Artificial Neural Networks: A Systematic Overview", Computer Science, (2021).
[8] Chigozie Nwankpa, Winifred Ijomah, Anurag Gachagan, and Stephen Marshall, "Activation Functions in Deep Learning: A Comprehensive Survey and Benchmark", Computer Science, (2018).
[9] J. Yang, H. Jin, R. Tang, X. Han, Q. Feng, H. Jiang, B. Yin, and X. Hu, "Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond", Computer Science, (2023).
[10] L. Feng, et al., "Attention as an RNN", Computer Science, (2024).
[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, "Attention Is All You Need", Computer Science, (2017).
[12] Z. Zhang and C. You, "Enhancing Quantum Entanglement in Bipartite Systems: Leveraging Optimal Control and Physics-Informed Neural Networks", Quantum Physics, (2024).
[13] M. T. Chu and M. M. Lin, "A complex-valued gradient flow for the entangled bipartite low rank approximation", Computer Physics Communications, (2022).
[14] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, "Language Models are Unsupervised Multitask Learners", Computer Science, (2019).
[15] M. M. Lin and M. T. Chu, "Low Rank Approximation of Entangled Bipartite Systems", (2022).
[16] Z. Zhang, C. You, et al, "Entanglement-Based Quantum Information Technology", Quantum Physics, (2023).
[17] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, "Quantum entanglement", Quantum Physics, (2007).
[18] OpenAI, et al., "GPT-4 Technical Report", Computer Science, (2023).
[19] J. Finnie-Ansley, P. Denny, B. A. Becker, A. Luxton-Reilly, and J. Prather, "The Robots Are Coming: Exploring the Implications of OpenAI Codex on Introductory Programming", Australasian Computing Education Conference, (2022).
[20] A. Chowdhery, et al., "Palm: Scaling language modeling with pathways", Journal of Machine Learning Research, (2023).