簡易檢索 / 詳目顯示

研究生: 林宗彣
Lin, Tsung-Wen
論文名稱: 磁場對集中絲狀體系統形成的影響
The impact of magnetic fields in the formation of Hub-filament systems
指導教授: 賴詩萍
Lai, Shih-Ping
口試委員: 江瑛貴
Jiang, Ing-Guey
張祥光
Chang, Hsiang-Kuang
李君樂
Li, Kwan-Lok
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 91
中文關鍵詞: 恆星形成星際絲狀體分子雲星際磁場次毫米天文學
外文關鍵詞: Star forming regions, Interstellar filaments, Molecular clouds, Interstellar magnetic fields, Submillimeter astronomy
相關次數: 點閱:40下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們使用JCMT BISTRO 計畫的數據,研究在恆星形成區中集中絲狀體結構 (HFS) 附近的磁場。在本篇研究中,我們利用JCMT 850$\mu$m 的影像來進行分析。為了分析在 HFS 附近磁場跟絲狀物的關係,我們使用 Discrete Persistent Structures Extractor (DisPerSE) 來尋找絲狀物脊線的位置,並在Ophiuchus、Perseus 和 Serpens 的區域中發現 31 個HFSs以及96條的絲狀物,其中 11% 的絲狀物與磁場的角度差存在著沿著絲狀物的方向上的振盪。

    我們比較在Perseus區域中有出現振盪之絲狀物的 N$_2$H$^+$ 、 HNC 、 HCO$^+$ 、 HC$_3$N 、 $^{13}$CO 和 C$^{18}$O 的平均譜線寬與其震盪的關係,並計算其與震盪頻率及震盪功率的皮爾遜相關係數,HC$_3$N、HCO$^+$、HNC、N$_2$H$^+$的平均線寬都有與震盪頻率或者震盪功率存在中等程度以上的相關性,顯示湍流有可能會影響到震盪的行為。

    在Wang 等人 (2024) 的研究中顯示,大部分的絲狀物可以分為兩種類型:類型 I 是絲狀物和局部的重力都接近與磁場垂直,類型 II 則是絲狀物和局部的重力都接近與磁場平行。而在我們的結果中,我們也觀測到類似於Wang 等人 (2024)結果中的類型 I ,但我們所觀測的類型 II 的絲狀物,其絲狀物與磁場之間的相對角度分布比他們的結果更加垂直。我們認為這可能是因為我們所研究的分子雲的質量比 Wang 等人 (2024) 研究的 NGC2264 低十到百倍,屬於低質量分子雲。因此我們認為,在低質量分子雲中的集中絲狀體結構與在高質量分子雲中的HFSs類似,都會出現沿著絲狀物的徑向塌縮和由局部重力所引起的縱向塌縮競爭。


    We investigate the magnetic field near the hub-filament structure (HFS) of star-forming regions using data from the JCMT B-field In STar Formation Region (BISTRO) project. Our goal is to statistically analyze the correlation between the magnetic fields and filaments associated with the HFS using 850 $\mu$m images from the JCMT. We use the Discrete Persistent Structures Extractor (DisPerSE) package to locate the crests of filaments and identify 31 HFSs in the Ophiuchus, Perseus, and Serpens molecular clouds. We find that 11% of the filaments exhibit spatial oscillations along the filament in the angle difference between the magnetic field and the filament directions.
    We analyzed the relationship between the average linewidths of N$_2$H$^+$, HNC, HCO$^+$, HC$_3$N, $^{13}$CO, and C$^{18}$O in oscillating filaments within the Perseus region and their oscillation characteristics. The Pearson correlation coefficients between the average linewidths and both the oscillation frequency and power reveal that HC$_3$N, HCO$^+$, HNC, and N$_2$H$^+$ exhibit a moderate or higher correlation with either oscillation frequency or power, suggesting that turbulence may influence oscillation behavior.
    Wang et al. (2024) shows most of filaments can be classified into Type I, where both the filament and local gravity directions close to perpendicular to the magnetic fields, and Type II, where both filament and local gravity directions close to parallel to the magnetic fields.
    Comparing our findings with Wang et al. (2024), we find a similar distribution of Type I filaments. However, Type II filaments in our study are oriented more perpendicularly to the magnetic field, likely due to the lower mass of our regions compared to NGC2264 in their study. This suggests that HFSs in low-mass molecular clouds also experience a competition between radial and longitudinal collapsing, similar to that observed in high-mass regions.

    Abstract (Chinese) I Acknowledgements (Chinese) II Abstract III Contents IV List of Figures VI List of Tables XV 1 Introduction 1 2 Data 4 2.1 BISTRO 850µm Data . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Herschel data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Molecular line data . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Result and analysis 7 3.1 Hub-Filament system . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.1 Identification of Filaments . . . . . . . . . . . . . . . . . . . 7 3.1.2 Identification of Hubs . . . . . . . . . . . . . . . . . . . . . . 8 3.1.3 Identification of Hub-Filament Systems . . . . . . . . . . . . 9 3.2 Filaments vs magnetic fields . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Spatial ’Oscillation’ in relative orientation along filament . . . . . . 29 3.4 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4.1 Molecule morphology . . . . . . . . . . . . . . . . . . . . . . 37 3.4.2 Turbulence in Filaments . . . . . . . . . . . . . . . . . . . . 42 3.5 Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.5.1 Gravity Directions . . . . . . . . . . . . . . . . . . . . . . . 44 3.5.2 GB-BF Analysis . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Discussion 50 4.1 Impact of Turbulence on Filament Oscillations . . . . . . . . . . . . 50 4.2 Interplay between magnetic field, gravity, and Filament . . . . . . . 55 4.3 Spatial Oscillation in Angle Difference . . . . . . . . . . . . . . . . 60 5 Conclusion 62 A Angle difference and power spectra in each filament without oscillation. 65 Bibliography 88

    Andr´e, P., Men’shchikov, A., Bontemps, S., et al. 2010a, , 518, L102, doi: 10.
    1051/0004-6361/201014666
    —. 2010b, , 518, L102, doi: 10.1051/0004-6361/201014666
    Arzoumanian, D., Andr´e, P., Didelon, P., et al. 2011, , 529, L6, doi: 10.1051/
    0004-6361/201116596
    Arzoumanian, D., Andr´e, P., K¨onyves, V., et al. 2019, Astronomy & Astrophysics,
    621, A42
    Arzoumanian, D., Furuya, R. S., Hasegawa, T., et al. 2021, , 647, A78, doi: 10.
    1051/0004-6361/202038624
    Busquet, G., Zhang, Q., Palau, A., et al. 2013, , 764, L26, doi: 10.1088/
    2041-8205/764/2/L26
    Chandrasekhar, S., & Fermi, E. 1953, , 118, 113, doi: 10.1086/145731
    Chung, E. J., Lee, C. W., Kwon, W., et al. 2022, , 164, 175, doi: 10.3847/
    1538-3881/ac8a43
    Chung, E. J., Lee, C. W., Kim, S., et al. 2019, , 877, 114, doi: 10.3847/1538-4357/
    ab12d1
    Col´ın, P., V´azquez-Semadeni, E., & G´omez, G. C. 2013, , 435, 1701, doi: 10.1093/
    mnras/stt1409
    Coud´e, S., Bastien, P., Houde, M., et al. 2019, , 877, 88, doi: 10.3847/1538-4357/
    ab1b23
    Doi, Y., Hasegawa, T., Furuya, R. S., et al. 2020a, , 899, 28, doi: 10.3847/
    1538-4357/aba1e2
    —. 2020b, , 899, 28, doi: 10.3847/1538-4357/aba1e2
    Federrath, C. 2015, , 450, 4035, doi: 10.1093/mnras/stv941
    Fiorellino, E., Elia, D., Andr´e, P., et al. 2021, , 500, 4257, doi: 10.1093/mnras/
    staa3420
    Heyer, M., Gong, H., Ostriker, E., & Brunt, C. 2008, , 680, 420, doi: 10.1086/
    587510
    Hwang, J., Kim, J., Pattle, K., et al. 2022, , 941, 51, doi: 10.3847/1538-4357/
    ac99e0
    Kamazaki, T., Okumura, S. K., Chikada, Y., et al. 2012, , 64, 29, doi: 10.1093/
    pasj/64.2.29
    Kauffmann, J., Bertoldi, F., Bourke, T. L., Evans, N. J., I., & Lee, C. W. 2008, ,
    487, 993, doi: 10.1051/0004-6361:200809481
    Koch, P. M., Tang, Y.-W., & Ho, P. T. P. 2012a, , 747, 79, doi: 10.1088/
    0004-637X/747/1/79
    —. 2012b, , 747, 80, doi: 10.1088/0004-637X/747/1/80
    —. 2013, , 775, 77, doi: 10.1088/0004-637X/775/1/77
    Kumar, M., Palmeirim, P., Arzoumanian, D., & Inutsuka, S. 2020, Astronomy &
    Astrophysics, 642, A87
    Kwon, J., Doi, Y., Tamura, M., et al. 2018, , 859, 4, doi: 10.3847/1538-4357/
    aabd82
    Kwon, W., Pattle, K., Sadavoy, S., et al. 2022, , 926, 163, doi: 10.3847/
    1538-4357/ac4bbe
    Ladjelate, B., Andr´e, P., K¨onyves, V., et al. 2020, , 638, A74, doi: 10.1051/
    0004-6361/201936442
    Li, H.-b., & Houde, M. 2008, , 677, 1151, doi: 10.1086/529581
    Lomb, N. R. 1976, , 39, 447, doi: 10.1007/BF00648343
    Minamidani, T., Nishimura, A., Miyamoto, Y., et al. 2016, in Society of PhotoOptical Instrumentation Engineers (SPIE) Conference Series, Vol. 9914, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, ed. W. S. Holland & J. Zmuidzinas, 99141Z, doi: 10.1117/12.
    2232137
    Myers, P. C. 2009, , 700, 1609, doi: 10.1088/0004-637X/700/2/1609
    Nakamura, F., & Li, Z.-Y. 2008, , 687, 354, doi: 10.1086/591641
    Palmeirim, P., Andr´e, P., Kirk, J., et al. 2013, , 550, A38, doi: 10.1051/
    0004-6361/201220500
    Pattle, K., Lai, S.-P., Hasegawa, T., et al. 2019, , 880, 27, doi: 10.3847/
    1538-4357/ab286f
    Pezzuto, S., Benedettini, M., Di Francesco, J., et al. 2021, , 645, A55, doi: 10.
    1051/0004-6361/201936534
    Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016, , 586, A138, doi: 10.
    1051/0004-6361/201525896
    Schneider, S., & Elmegreen, B. G. 1979, , 41, 87, doi: 10.1086/190609
    Soler, J. D. 2019, , 629, A96, doi: 10.1051/0004-6361/201935779
    Soler, J. D., Hennebelle, P., Martin, P. G., et al. 2013, , 774, 128, doi: 10.1088/
    0004-637X/774/2/128
    Sousbie, T. 2011, , 414, 350, doi: 10.1111/j.1365-2966.2011.18394.x
    Van Loo, S., Keto, E., & Zhang, Q. 2014, , 789, 37, doi: 10.1088/0004-637X/
    789/1/37
    VanderPlas, J. T. 2017, ArXiv e-prints. https://arxiv.org/abs/1703.09824
    Wang, J.-W., Lai, S.-P., Clemens, D. P., et al. 2020, , 888, 13, doi: 10.3847/
    1538-4357/ab5c1c
    Wang, J.-W., Koch, P. M., Tang, Y.-W., et al. 2022, , 931, 115, doi: 10.3847/
    1538-4357/ac6872
    Wang, J.-W., Koch, P. M., Clarke, S. D., et al. 2024, , 962, 136, doi: 10.3847/
    1538-4357/ad165b
    Ward-Thompson, D., Pattle, K., Kirk, J. M., et al. 2016, , 463, 1008, doi: 10.
    1093/mnras/stw1978
    Yen, H.-W., Koch, P. M., Hull, C. L. H., et al. 2021, , 907, 33, doi: 10.3847/
    1538-4357/abca99
    Zhou, J.-W., Liu, T., Evans, N. J., et al. 2022, , 514, 6038, doi: 10.1093/mnras/
    stac1735

    QR CODE