簡易檢索 / 詳目顯示

研究生: 曾厚程
Hou-Cheng Tzeng
論文名稱: 在2.5GEoS設計一個彈性且讓頻寬可最大利用的交連LCAS映射器
A Flexible Cross Connect LCAS Mapper for Bandwidth Maximization in 2.5G EoS
指導教授: 邱瀞德
Ching-Te Chiu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 50
中文關鍵詞: EoSVCATLCAS映射器
外文關鍵詞: EoS, VCAT, LCAS, Mapper
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來乙太網路(Ethernet)的技術發展克服了速度與距離的瓶頸,使得越來越多的都會及廣域網路服務業者選擇了建置成本較低廉的乙太網路。然而,當位於遠距離兩端的多個乙太網路需要相連接時,現今較經濟的解決方法是結合既有的同步光纖網路(SONET/SDH),將乙太網路上的封包轉換成同步光纖網路上的固定訊框來傳輸,加上乙太網路的快速成長,電信業者及企業對於Ethernet-over-SONET/SDH (EoS)映射器的需求也與日俱增,映射器的建置不僅僅能提供使用者較為經濟的服務,亦能幫助電信業者透過既有的光纖基礎設施來提供資料服務並增加新類營收。
    論文研究重點主要在架構以及通訊協定上針對映射器的設計做多方面的探討與改良,首先透過改變頻寬調整協定(Link Capacity Adjustment Scheme)的表頭,設計新的訊息產生與解譯方式,來加快網路兩端溝通的速度,使得系統對於速率變動極快的乙太網路有較佳的頻寬調節和錯誤反應能力;再者,藉由設計一個包含本地交換(cross-connect)功能的映射器架構,使得LCAS在分配頻寬給多組乙太網路的時候能有保有彈性,不會受到硬體架構的阻礙,而降低頻寬的利用度;此外,我們提出了欄插敘(column-interleaving)的傳送方法,將標準的VC-3 (virtual container-3)傳送單元切成三份來傳輸,透過這個方式來提高多組乙太網路資料的頻寬使用率至97.22%;最後,針對EoS常使用的虛擬連(virtual concatenation)傳輸方式造成的延遲不同問題(differential delay)提出新的映射方法,接收端因而不需要大量的記憶體來緩衝封包各個部分不同抵達時間的缺點,進而降低映射器的成本。
    整體而言,此論文所提出的EoS映射器架構具有較高的頻寬使用率,彈性且快速的頻寬分配調整,且針對使用用戶資料訊息協定(UDP)的應用能有不需接收端緩衝記憶體的優點。


    Recent development in Ethernet technology drives the deployment of Ethernet from LANs to MANs. However, since Ethernet traffic will eventually be aggregated into SONET in WAN environment, an Ethernet-over-SONET (EoS) mapper designed to ease the transition becomes an important topic for service providers to create new revenues from their legacy SONET infrastructure.
    In this thesis, we investigate extensive design issues of an efficient EoS mapper. First, we revise header of link capacity adjustment scheme (LCAS) protocol to accelerate the speed of bandwidth adjustment. Second, we propose architecture with cross-connect functionality to raise flexibility of LCAS bandwidth allocation. Third, we refine virtual concatenation (VCAT) granularity by interleaving payload area of a virtual container-3 (VC-3) in order to further reduce bandwidth waste of transporting multiple groups of client signals. Finally, we devise a new transmission method that doesn’t disassemble an intact packet among diverse routes. Thus, large memory for differential delay compensation can be eliminated in the receiving end for UDP applications.

    Abstract ------------------------------------- ii Chapter 1 Introduction ----------------------- 1 1-1 Introduction --------------------------- 1 1-2 Thesis Organization -------------------- 1 Chapter 2 Background and Related Works ------- 3 2-1 Why EoS? ------------------------------- 3 2-2 Virtual Concatenation ---------------- 9 2-3 Link Capacity Adjustment Scheme -------- 11 2-4 Related Works ------------------------ 13 Chapter 3 Proposed Improvements -------------- 15 3-1 LCAS Performance Enhancement ----------- 16 3-2 Cross-connect Architecture for Flexible VCAT/LCAS Member Assignment---- 21 3-3 Bandwidth Maximization for Multiple-group Signals ----------------- 25 3-4 Differential Delay Memory Minimization - 28 Chapter 4 Architecture Design of Flexible Cross-Connect LCAS Mapper ---------- 33 4-1 System Architecture Design ------------- 33 4-2 TX Architecture Design ----------------- 35 4-3-1 UTOPIA Interface ------------------- 36 4-3-2 HDLC Encapsulation Block ----------- 37 4-3-3 Overhead Processing Block ---------- 37 4-3-4 LCAS module ------------------------ 38 4-3-4-1 Source LCAS Member (MB) unit --- 38 4-3-4-1 Source Virtual Concatenation Group (VCG) unit --------------- 39 4-3-4-1 Inter-Member Control (IMC) unit- 40 4-3-5 Switching Block -------------------- 41 4-3 RX architecture Design ----------------- 42 4-4 Architecture Comparison ---------------- 43 4-5 Simulation Result ---------------------- 45 Chapter 5 Conclusions and Future works ------- 47 BIBLIOGRAPHY --------------------------------- 49

    [1] ITU-T G.707 Committee, “Network node interface for the synchronous digital hierarchy (SDH)”, ITU-T standard, 2000
    [2] ITU-T G.7042 Committee, “Link capacity adjustment scheme (LCAS) for virtual concatenated signals”, ITU-T standard, 2004
    [3] Acharya, S., Gupta, B., Risbood, P., Srivastava, A.,"PESO: low overhead protection for Ethernet over SONET transport", INFOCOM 2004
    [4] Peng Wang, Jishi Li, Depeng Jin, Lieguang Zeng, "Towards more practical LCAS for VCAT in MSTP ASIC", Proc. SPIE Vol. 6022, 2005
    [5] G. Garg and S. Paul, “Managing Differential Delay in SONET Architectures”, CommsDesign.com, http://www.commsdesign.com, 2002.
    [6] Jinsong Liu, Depeng Jin, Lieguang Zeng, “A single chip solution of dual-gigabit Ethernet over 2.5G SDH/SONET”, Circuits and Systems and West Sino Expositions, IEEE 2002 International Conference, 2002
    [7] Peng Wang, Depeng Jin, Lieguang Zeng, “On designing of LCAS over VCAT for an EOS chip”, Proc. of SPIE Vol. 5626, pp. 854-864, 2005
    [8] Product Brief, MARS2G5 Pkt-Xtrm-VC (TMPRFE2G5) Datamapper by Agere, 2004
    [9] Mansoor Alicherry, Chitra Phadke, Vishy Poosala, “Delay Distributed VCAT for Efficient Data-Optical Transport”, Optical Fiber Communication Conference, 2005
    [10] IEEE 802.17 Standard, “part 17: resilient packet ring (RPR) access method and physical layer specifications”, 2004
    [11] PG Menon, Stephen D. Dukes, Girish Muckai, Rajive Dhar, "Exposing The Spatial Re-Use Myth", ARRIS International Inc. 2002
    [12] “Deploying Multiservice Applications Using RPR Over the Existing SONET Infrastructure”, FUJITSU NETWORK COMMUNICATIONS INC.
    [13] X Li, D Jin, L Zeng, “Encapsulation and rate adaptation for Ethernet over SDH”, IEEE International Conference on Communications: Circuits and Systems and West Sino Expositions, 2002
    [14] 802.3 IEEE Committee, “Part 3: Carrier sense multiple access with collision detect on (CSMA/CD) access method and physical layer specifications”, IEEE, 2000
    [15] Stamatios V. Kartalooulos, “Next Generation SONET/SDH: Voice and Data”, IEEE Press, 2004, p.34~38
    [16] J KURI, M GAGNAIRE, N PUECH, “On the Resource Efficiency of Virtual Concatenation in SDH/SONET Mesh Transport Networks Bearing Protected Scheduled Connections”, Journal of Lightwave Technology, 2005
    [17] Vish Ramamurti, John Siwko, George Young, and Mike Pepe, SBC Laboratories, Inc., “Initial implementations of point-to-point Ethernet over SONET/SDH transport”, IEEE Communication Magazine, Mar 2004
    [18] W. Simpson, “PPP over SONET/SDH”, IETF RFC 1619, May 1994
    [19] Cavendish, D., Murakami, K., Yun, S.-H., Matsuda, O., Nishihara, M., “New Transport Services for Next-Generation SONET/SDH Systems”, IEEE Communications Magazine, 2002
    [20] “Packet-over-SONET/SDH Application Note”, Cisco Systemc, Inc., 1999
    [21] Harpreet Choha, Suvhasis Mukhopadhya, Rob Schwabe, “Ethernet-over-Sonet Tutorial: Part 1 & Part II”, CommsDesign, April, 2004
    [22] ITU-T Rec. G.709, “Interfaces for the Optical Transport Network (OTN)” , 2001
    [23] Mimi Dannhardt, “Ethernet Over SONET”, PMC-2020296, PMC-Sierra, Inc. Feb., 2002
    [24] ITU-T G.7041 Committee, “Generic Framing Procedure”, ITU-T Recommendation, 2003
    [25] “Comparison to Legacy SONET/SDH MANs for Metro Data Service Providers”, METRO Ethernet Forum, July 2003
    [26] ANSI, “Synchronous Optical Network (SONET): Physical Layer Specifications”, T1.105.06-2002
    [27] G Shi, Q Wang, Z Liu, L Zeng, “SDH Virtual Concatenation technique used in Ethernet data transport”, IEEE International Conference on Communications: Circuits and Systems and West Sino Expositions, 2002
    [28] “Quad IMUX Ethernet Mapper : DS33Z41 REV: 021405”, MAXIM DALLAS SEMICONDUCTOR, 2005

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE