簡易檢索 / 詳目顯示

研究生: 黃琳証
Huang, Lin-Zheng
論文名稱: 適用於多輸入多輸出正交分頻多工系統之內差式QR分解處理器
Interpolation-based QR Decomposition Processor for MIMO-OFDM system
指導教授: 黃元豪
Huang, Yuan-Hao
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 102
中文關鍵詞: QR分解內插多輸入多輸出分頻多工多輸入多輸出解碼器群序多候選人制
外文關鍵詞: QR decomposition, interpolation, MIMO, OFDM, MIMO detector, Group order, Multiple candidates selection, preprocess
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在先進的MIMO-OFDM系統中速度需求巨幅攀升,以往tone-by-tone 的QR分解構成高運算複雜度,形成了實作上的瓶頸。為了解決此問題,內差式QR分解演算法已證實能降低大量複雜度。本論文提出 one step function 降低內插式QR分解演算法的複雜度,並且加入可規模性讓演算法適用於不同大小的通道矩陣。此外,藉由導入群序(Group order)概念進入內插式QR演算法,群序型內插式QR演算法被提出以提升偵測效能。根據我們所知,提出的內插式QR分解演算法是截至目前為止複雜度最低的QR分解演算法。內插式QR分解的可更改設定之硬體架構被提出,並且選用多候選人制QR-SIC 與之配合。多候選人制QR-SIC擁有可規模化運算複雜度還有彈性效能。內插式QR分解和多候選人制QR-SIC的整合可以實現一套低複雜度且高效能的MIMO detector於各種的MIMO-OFDM系統。因此,多候選人制QR-SIC的迭代式硬體架構被提出,縮短其電路延遲使其運作在更高頻的速度上,並顯示在低維度調變方式時,其有等同於ML的表現。結合上述兩者,提出的QR-based MIMO 架構可支援4x4. 4x2 和2x2通道矩陣,以及QPSK, 16-QAM 和 64-QAM 的調變方式。根據 90nm UMC COMS製程的初步合成結果,提出之內插式QR分解的速度高達31.25 MQRD/s,可以支援3GPP-LTE Rel. 8的硬體規格中下傳鏈路的最高速度。


    The throughput requirement of advanced MIMO-OFDM systems increases tremendously recently. The complexity of tone-by-tone QR decomposition becomes the bottleneck of implementation. The interpolation-based QR decomposition(IQRD) algorithm has been proven to reduce the complexity. In the thesis, a one step function is proposed to reduce more complexity of IQRD, and the scalability for different-size channel matrices is attractive to implementation. Moreover, a group-ordering interpolation-based QR decomposition (GO-IQRD) is presented by introducing group-ordering concept into IQRD to increase detection performance. To our best knowledge, the proposed QR decomposition has the lowest complexity among QR decomposition algorithms. A configurable architecture of IQRD without group-order is proposed. Besides, QR-based successive interference cancellation (SIC)
    with multiple-candidate selection (MCS-QR-SIC) which has scalable complexity and flexible performance is chosen to cooperate with IQRD. These flexible algorithms are integrated together to be a MIMO detector which could be realized in many MIMO-OFDM systems. The iterative architecture of MCS-QR-SIC is presented. The shorten critical path enables it to work on higher frequency, and it shows the proposed hardware could achieve ML detection performance by controller in low-order modulation. Hence, a QR-based MIMO architecture which supports 4 x 4, 4 x 2, and 2 x 2 channel matrices, with QPSK, 16-QAM, and 64-QAM modulations in the specified bandwidth in the 3GPP-LTE standard is presented. The synthesis result of proposed interpolation-based QR decomposition with UMC 90nm 1P9M CMOS technology shows the corresponding throughput is up to 31.25 MQRD/s, so it could meet the requirement of the highest downlink data rate in hardware categories for 3GPP-LTE Rel. 8.

    1 Introduction 1 1.1MIMO Technology..............................1 1.2 Contribution..................................3 1.3 Thesis Organization..............................5 2 MIMO-OFDM System and MIMO Detection 7 2.1 System Model.................................7 2.1.1MIMO-OFDM System Model....................7 2.1.2 3GPP-LTE Release8 Standard...................9 2.2 Review of MIMO Detection.........................12 2.2.1 Linear Detection...........................13 2.2.2 Successive Interference Cancellation (SIC) Detection.........15 2.2.3 Maximum-Likelihood Detection...................18 2.2.4 Sphere Detection and K-best Detection ...............20 2.3 Review of QR preprocessing.........................22 2.3.1 Gram-Schmidt Algorithm......................22 2.3.2 Householder Reflection........................24 2.3.3 Givens Rotation............................25 2.3.4 Interpolation-based QR Decomposition (IQRD)...........28 3 Proposed QR Preprocessing and MIMO Detection Algorithms 33 3.1QR Preprocessing...............................34 3.1.1 Modified Interpolation-based QR Decomposition (MIQRD)....34 3.1.2 Group-Ordering Modified Interpolation-based QR Decomposition (GO-MIQRD).............................39 3.2 Multiple-Candidate-Selection QRSIC....................42 4 Architecture Design of MIQRD and MCS-QRSIC 47 4.1 Architecture Overview............................47 4.2 Architecture Design and Fixed Point Simulation..............53 4.2.1 MIQRD................................53 4.2.2 MCS-QR-SIC.............................67 4.3 Implementation Result............................79 5 Implementation and Verification of MIMO Detector 85 5.1 Pre-simulation.................................86 5.2 Synthesis Result................................86 6 Conclusion 93 6.1 Conclusion...................................93 6.2 Future Work..................................94

    [1] G. J. FOSCHINI, “Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas,” Bell Labs. Tech. J., vol. 1, no. 2, pp. 41–59, 1996.
    [2] H. Bolcskei and A. J. Paulraj, Multiple-input multiple-output (MIMO) wireless systems, 2002, pp. 90.1–90.14.
    [3] “IEEE Standard for Local and metropolitan area networks Part 16:Air Interface for Broadband Wireless Access Systems,” IEEE Std 802.16-2009( Revision of IEEE
    Std 802.16-2004), pp. C1–2004, 29 2009.
    [4] 3GPP TS 36.211 V8.3.0,“Evolved Universal Terrestrial Radio Access(E-UTRA);
    Physical Channels and Modulation (Rel.8),”May2008.
    [5] M. Baker, “REV-090003r1 LTE-Advanced Physical Layer,”Dec.2009.
    [6] P. -L. Chiu and Y. -H. Huang, “A Scalable MIMO Detection Architecture with Non-Sorted Multiple-Candidate Selection,” in Circuits and Systems, 2009. ISCAS2009. The 2009 IEEE International Symposium on, May 2009.
    [7] P. Wolniansky, G. Foschini, G. Golden, and R. Valenzuela, “V-blast: an architecture for realizing very high data rates over the rich-scattering wireless channel,” in Signals, Systems, and Electronics,1998.ISSS E98. 1998 URSI International Symposium on, Sep-2 Oct 1998, pp. 295–300.
    [8] S. Baro, G. Bauch, A. Pavlic, and A. Semmler, “Improving BLAST performance
    Using space-time block codes and turbo decoding,” in Global Telecommunications Conference,2000.GLOBECOM’00.IEEE, vol. 2, 2000, pp. 1067–1071 vol.2.
    [9] D. Gore, J. Heath, R. W., and A. Paulraj, “On performance of the zero forcing
    Receiver in presence of transmit correlation,” in InformationTheory,2002.Proceedings. 2002 IEEE International Symposium on, 2002, pp. 159–.
    [10] R. Bohnke, D. Wubben, V. Kuhn, and K.-D. Kammeyer, “Reduced complexity
    MMSE detection for BLAST architectures,” in Global Telecommunications Conference, 2003.GLOBECOM’03.IEEE, vol. 4, Dec. 2003, pp. 2258–2262 vol.4.
    [11] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading channels,”
    Information Theory, IEEE Transactions on, vol. 45, no. 5, pp. 1639–1642, Jul 1999.
    [12] K. wai Wong, C. ying Tsui, R.-K. Cheng, and W. ho Mow, “A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels,” in Circuits and Systems,
    2002. ISCAS 2002. IEEE International Symposium on, vol. 3, 2002, pp. III–273–III–276vol.3.
    [13] Y. -C. Liang, D. Kit, S. Attallah, W. S. Leon, and C. Xu, “Dynamic QRDM Receivers for MIMO Beamforming Systems with Imperfect Channel State Information,” in Information, Communications and Signal Processing, 2005Fifth International Conference on, 0-0 2005, pp. 801–805.
    [14] G. H. Golub and C. F. Van Loan, Matrix computations (3rded.). Baltimore, MD,
    USA: Johns Hopkins University Press,1996.
    [15] A. Bjorck and C. C. Paige,“Loss and recapture of orthogonality in the modified
    Gram-Schmidt algorithm,” SIAMJ.Matrix Anal. Appl., vol. 13, no.1, pp. 176–190,
    1992.
    [16] C. K. Singh, S. H. Prasad, and P. T. Balsara, “A Fixed-Point Implementation for
    QR Decomposition,” in Design, Applications, Integration and Software, 2006 IEEE Dallas/CAS Workshop on, Oct. 2006, pp. 75–78.
    [17] G. Lightbody, R. Woods, and R.Walke, “Design of a parameterizable silicon intellectual property core for QR-based RLS filtering,” Very Large Scale Integration
    (VLSI) Systems, IEEE Transactions on, vol. 11, no. 4, pp. 659–678, Aug. 2003.
    [18] D. Cescato, M. Borgmann, H. Bolcskei, J. Hansen, and A. Burg,“Interpolation-
    Based QR decomposition in MIMO-OFDM systems,” in Proc.6th IEEE Workshop on Signal Processing Advances in Wireless Communications(SPAWC), Jun. 2005, pp.945–949.
    [19] Y. G. Li, J. Cimini, L. J., and N. Sollenberger, “Robust channel estimation for
    OFDM systems with rapid dispersive fading channels,” in Communications,1998. ICC98. Conference Record. 1998 IEEE International Conference on,vol.3,Jun 1998,pp.1320–1324vol.3.
    [20]D. Cescato and H. Bolcskei,“Algorithms for interpolation-based QR decomposition in MIMO-OFDM systems,” IEEE Transaction on Signal Processing, Oct. 2009.
    [21] A. Burg, “VLSI circuits for MIMO communication systems,” Ph. D. dissertation,
    Swiss Federal Institute of Technology Zurich, Zurich, Switzerland, 2006.
    [22] L. Ying, Z. Yang, and W. Jibo, “An Ordering Interpolation-based QR Decomposition Algorithm for V-BLAST OFDM Systems with Two Transmit Antennas,” in ITS Telecommunications Proceedings, 2006 6th International Conference on, June 2006,pp.366–369.
    [23] B. Hassibi, “An efficient square-root algorithm for blast,” in Acoustics, Speech, and Signal Processing, 2000. ICASSP ’00. Proceedings. 2000 IEEE International Conference on, vol. 2, 2000, pp. II737–II740 vol.2.
    [24] D. Wubben, R. Bohnke, J. Rinas, V. Kuhn, and K. Kammeyer, “Efficient algorithm for decoding layered space-time codes,” Electronics Letters, vol. 37, no. 22, pp.1348–1350,Oct 2001.
    [25] Z. Guo and P. Nilsson, “A VLSI implementation of MIMO detection for future
    Wireless communications,” in Personal, Indoor and Mobile Radio Communications,
    2003.PIMRC2003.14thIEEEProceedingson, vol. 3, Sept. 2003, pp. 2852–2856
    vol.3.
    [26] F. Sobhanmanesh, S. Nooshabadi, and D. Habibi,“A Robust QR-based Detector for V-BLAST and its Efficient Hardware Implementation,” in Communications, 2005Asia-Pacific Conference on, Oct. 2005, pp. 421–424.
    [27] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in lattices,” Information Theory, IEEE Transactions on, vol. 48, no. 8, pp. 2201–2214, Aug 2002.
    [28] D. Perels, S. Haene, P. Luethi, A. Burg, N. Felber, W. Fichtner, and H. Bolcskei,“Asic implementation of a MIMO-OFDM transceiver for 192Mbps WLANs,” in
    Solid-State Circuits Conference,2005. ESSCIRC 2005. Proceedings of the 31st European, Sept. 2005, pp. 215–218.
    [29] T. Kaiser, “ When will smart antennas be ready for the market? Part I,” Signal
    Processing Magazine, IEEE, vol. 22, no. 2, pp. 87–92, March 2005.
    [30] J. Rinne and M. Renfors, “Pilot spacing in orthogonal frequency division multiplexing systems on practical channels,” Consumer Electronics, IEEE Transactions on, vol. 42, no. 4, pp. 959–962, Nov 1996.
    [31] M. -H. Hsieh and C. -H. Wei, “Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels,” Consumer Electronics, IEEE Transactions on, vol. 44, no. 1, pp. 217–225, Feb 1998.
    [32] G. Knagge, L. Davis, G. Woodwar, and S.Weller, “VLSI preprocessing techniques for MUD and MIMO sphere detection, ”in Communications Theory Workshop, 2005.Proceedings.6th Australian, Feb. 2005, pp. 221–228.
    [33] T. -D. Chiueh and P. -Y. Tsai, OFDM Baseband Receiver Design for Wireless Communications. Wiley Publishing, 2007.
    [34] P. Luethi, C. Studer, S. Duetsch, E. Zgraggen, H. Kaeslin, N. Felber, and W. Fichtner, “Gram-Schmidt-based QR decomposition for MIMO detection: VLSI implementation and comparison,” in Circuits and Systems, 2008. APCCAS 2008. IEEE Asia Pacific Conference on, 30 2008-Dec. 3 2008, pp. 830–833.
    [35] P. Luethi, A. Burg, S. Haene, D. Perels, N. Felber, and W. Fichtner, “VLSI Implementation of a High-Speed Iterative Sorted MMSE QR Decomposition,” in Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on, May 2007, pp.1421–1424.
    [36] C. K. Singh, S. H. Prasad, and P. T. Balsara, “VLSI Architecture for Matrix Inversion using Modified Gram-Schmidt based QR Decomposition,” in VLSI Design,
    2007.Held jointly with 6th International Conference on Embedded Systems.,20th International Conference on, Jan. 2007, pp. 836–841.
    [37] R. -H. Lai, “Design of An 8×8 MIMO Detector for Wireless Communications,”
    Master’s thesis, Department of Electrical Engineering, Nation Tsing Hua University, Hsinchu, Taiwan, 2009.
    [38] M. Shabany and P. Gulak, “Scalable VLSI architecture for K-best lattice decoders,” in Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on, May 2008, pp.940–943.
    [39] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes 3rd Edition: The Art of Scientific Computing. New York, NY, USA: Cambridge University Press, 2007.
    [40] M. Borgmann and H. Bolcskei,“Interpolation-based efficient matrix inversion for MIMO-OFDM receivers,” in Proc. 38th Asilomar Conf. Signals, Systems, Computers, Nov. 2004, pp. 1941–1947, Vol. 2.
    [41] D. Wubben and K. -D. Kammeyer, “Interpolation-based successive interference cancellation for per-antenna-coded MIMO-OFDM systems using P-SQRD,” in Smart
    Antennas,2006.WSA2006.InternationalITGWorkshopon, Mar. 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE