研究生: |
黃琳証 Huang, Lin-Zheng |
---|---|
論文名稱: |
適用於多輸入多輸出正交分頻多工系統之內差式QR分解處理器 Interpolation-based QR Decomposition Processor for MIMO-OFDM system |
指導教授: |
黃元豪
Huang, Yuan-Hao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 102 |
中文關鍵詞: | QR分解 、內插 、多輸入多輸出 、分頻多工 、多輸入多輸出解碼器 、群序 、多候選人制 |
外文關鍵詞: | QR decomposition, interpolation, MIMO, OFDM, MIMO detector, Group order, Multiple candidates selection, preprocess |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在先進的MIMO-OFDM系統中速度需求巨幅攀升,以往tone-by-tone 的QR分解構成高運算複雜度,形成了實作上的瓶頸。為了解決此問題,內差式QR分解演算法已證實能降低大量複雜度。本論文提出 one step function 降低內插式QR分解演算法的複雜度,並且加入可規模性讓演算法適用於不同大小的通道矩陣。此外,藉由導入群序(Group order)概念進入內插式QR演算法,群序型內插式QR演算法被提出以提升偵測效能。根據我們所知,提出的內插式QR分解演算法是截至目前為止複雜度最低的QR分解演算法。內插式QR分解的可更改設定之硬體架構被提出,並且選用多候選人制QR-SIC 與之配合。多候選人制QR-SIC擁有可規模化運算複雜度還有彈性效能。內插式QR分解和多候選人制QR-SIC的整合可以實現一套低複雜度且高效能的MIMO detector於各種的MIMO-OFDM系統。因此,多候選人制QR-SIC的迭代式硬體架構被提出,縮短其電路延遲使其運作在更高頻的速度上,並顯示在低維度調變方式時,其有等同於ML的表現。結合上述兩者,提出的QR-based MIMO 架構可支援4x4. 4x2 和2x2通道矩陣,以及QPSK, 16-QAM 和 64-QAM 的調變方式。根據 90nm UMC COMS製程的初步合成結果,提出之內插式QR分解的速度高達31.25 MQRD/s,可以支援3GPP-LTE Rel. 8的硬體規格中下傳鏈路的最高速度。
The throughput requirement of advanced MIMO-OFDM systems increases tremendously recently. The complexity of tone-by-tone QR decomposition becomes the bottleneck of implementation. The interpolation-based QR decomposition(IQRD) algorithm has been proven to reduce the complexity. In the thesis, a one step function is proposed to reduce more complexity of IQRD, and the scalability for different-size channel matrices is attractive to implementation. Moreover, a group-ordering interpolation-based QR decomposition (GO-IQRD) is presented by introducing group-ordering concept into IQRD to increase detection performance. To our best knowledge, the proposed QR decomposition has the lowest complexity among QR decomposition algorithms. A configurable architecture of IQRD without group-order is proposed. Besides, QR-based successive interference cancellation (SIC)
with multiple-candidate selection (MCS-QR-SIC) which has scalable complexity and flexible performance is chosen to cooperate with IQRD. These flexible algorithms are integrated together to be a MIMO detector which could be realized in many MIMO-OFDM systems. The iterative architecture of MCS-QR-SIC is presented. The shorten critical path enables it to work on higher frequency, and it shows the proposed hardware could achieve ML detection performance by controller in low-order modulation. Hence, a QR-based MIMO architecture which supports 4 x 4, 4 x 2, and 2 x 2 channel matrices, with QPSK, 16-QAM, and 64-QAM modulations in the specified bandwidth in the 3GPP-LTE standard is presented. The synthesis result of proposed interpolation-based QR decomposition with UMC 90nm 1P9M CMOS technology shows the corresponding throughput is up to 31.25 MQRD/s, so it could meet the requirement of the highest downlink data rate in hardware categories for 3GPP-LTE Rel. 8.
[1] G. J. FOSCHINI, “Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas,” Bell Labs. Tech. J., vol. 1, no. 2, pp. 41–59, 1996.
[2] H. Bolcskei and A. J. Paulraj, Multiple-input multiple-output (MIMO) wireless systems, 2002, pp. 90.1–90.14.
[3] “IEEE Standard for Local and metropolitan area networks Part 16:Air Interface for Broadband Wireless Access Systems,” IEEE Std 802.16-2009( Revision of IEEE
Std 802.16-2004), pp. C1–2004, 29 2009.
[4] 3GPP TS 36.211 V8.3.0,“Evolved Universal Terrestrial Radio Access(E-UTRA);
Physical Channels and Modulation (Rel.8),”May2008.
[5] M. Baker, “REV-090003r1 LTE-Advanced Physical Layer,”Dec.2009.
[6] P. -L. Chiu and Y. -H. Huang, “A Scalable MIMO Detection Architecture with Non-Sorted Multiple-Candidate Selection,” in Circuits and Systems, 2009. ISCAS2009. The 2009 IEEE International Symposium on, May 2009.
[7] P. Wolniansky, G. Foschini, G. Golden, and R. Valenzuela, “V-blast: an architecture for realizing very high data rates over the rich-scattering wireless channel,” in Signals, Systems, and Electronics,1998.ISSS E98. 1998 URSI International Symposium on, Sep-2 Oct 1998, pp. 295–300.
[8] S. Baro, G. Bauch, A. Pavlic, and A. Semmler, “Improving BLAST performance
Using space-time block codes and turbo decoding,” in Global Telecommunications Conference,2000.GLOBECOM’00.IEEE, vol. 2, 2000, pp. 1067–1071 vol.2.
[9] D. Gore, J. Heath, R. W., and A. Paulraj, “On performance of the zero forcing
Receiver in presence of transmit correlation,” in InformationTheory,2002.Proceedings. 2002 IEEE International Symposium on, 2002, pp. 159–.
[10] R. Bohnke, D. Wubben, V. Kuhn, and K.-D. Kammeyer, “Reduced complexity
MMSE detection for BLAST architectures,” in Global Telecommunications Conference, 2003.GLOBECOM’03.IEEE, vol. 4, Dec. 2003, pp. 2258–2262 vol.4.
[11] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading channels,”
Information Theory, IEEE Transactions on, vol. 45, no. 5, pp. 1639–1642, Jul 1999.
[12] K. wai Wong, C. ying Tsui, R.-K. Cheng, and W. ho Mow, “A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels,” in Circuits and Systems,
2002. ISCAS 2002. IEEE International Symposium on, vol. 3, 2002, pp. III–273–III–276vol.3.
[13] Y. -C. Liang, D. Kit, S. Attallah, W. S. Leon, and C. Xu, “Dynamic QRDM Receivers for MIMO Beamforming Systems with Imperfect Channel State Information,” in Information, Communications and Signal Processing, 2005Fifth International Conference on, 0-0 2005, pp. 801–805.
[14] G. H. Golub and C. F. Van Loan, Matrix computations (3rded.). Baltimore, MD,
USA: Johns Hopkins University Press,1996.
[15] A. Bjorck and C. C. Paige,“Loss and recapture of orthogonality in the modified
Gram-Schmidt algorithm,” SIAMJ.Matrix Anal. Appl., vol. 13, no.1, pp. 176–190,
1992.
[16] C. K. Singh, S. H. Prasad, and P. T. Balsara, “A Fixed-Point Implementation for
QR Decomposition,” in Design, Applications, Integration and Software, 2006 IEEE Dallas/CAS Workshop on, Oct. 2006, pp. 75–78.
[17] G. Lightbody, R. Woods, and R.Walke, “Design of a parameterizable silicon intellectual property core for QR-based RLS filtering,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 11, no. 4, pp. 659–678, Aug. 2003.
[18] D. Cescato, M. Borgmann, H. Bolcskei, J. Hansen, and A. Burg,“Interpolation-
Based QR decomposition in MIMO-OFDM systems,” in Proc.6th IEEE Workshop on Signal Processing Advances in Wireless Communications(SPAWC), Jun. 2005, pp.945–949.
[19] Y. G. Li, J. Cimini, L. J., and N. Sollenberger, “Robust channel estimation for
OFDM systems with rapid dispersive fading channels,” in Communications,1998. ICC98. Conference Record. 1998 IEEE International Conference on,vol.3,Jun 1998,pp.1320–1324vol.3.
[20]D. Cescato and H. Bolcskei,“Algorithms for interpolation-based QR decomposition in MIMO-OFDM systems,” IEEE Transaction on Signal Processing, Oct. 2009.
[21] A. Burg, “VLSI circuits for MIMO communication systems,” Ph. D. dissertation,
Swiss Federal Institute of Technology Zurich, Zurich, Switzerland, 2006.
[22] L. Ying, Z. Yang, and W. Jibo, “An Ordering Interpolation-based QR Decomposition Algorithm for V-BLAST OFDM Systems with Two Transmit Antennas,” in ITS Telecommunications Proceedings, 2006 6th International Conference on, June 2006,pp.366–369.
[23] B. Hassibi, “An efficient square-root algorithm for blast,” in Acoustics, Speech, and Signal Processing, 2000. ICASSP ’00. Proceedings. 2000 IEEE International Conference on, vol. 2, 2000, pp. II737–II740 vol.2.
[24] D. Wubben, R. Bohnke, J. Rinas, V. Kuhn, and K. Kammeyer, “Efficient algorithm for decoding layered space-time codes,” Electronics Letters, vol. 37, no. 22, pp.1348–1350,Oct 2001.
[25] Z. Guo and P. Nilsson, “A VLSI implementation of MIMO detection for future
Wireless communications,” in Personal, Indoor and Mobile Radio Communications,
2003.PIMRC2003.14thIEEEProceedingson, vol. 3, Sept. 2003, pp. 2852–2856
vol.3.
[26] F. Sobhanmanesh, S. Nooshabadi, and D. Habibi,“A Robust QR-based Detector for V-BLAST and its Efficient Hardware Implementation,” in Communications, 2005Asia-Pacific Conference on, Oct. 2005, pp. 421–424.
[27] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in lattices,” Information Theory, IEEE Transactions on, vol. 48, no. 8, pp. 2201–2214, Aug 2002.
[28] D. Perels, S. Haene, P. Luethi, A. Burg, N. Felber, W. Fichtner, and H. Bolcskei,“Asic implementation of a MIMO-OFDM transceiver for 192Mbps WLANs,” in
Solid-State Circuits Conference,2005. ESSCIRC 2005. Proceedings of the 31st European, Sept. 2005, pp. 215–218.
[29] T. Kaiser, “ When will smart antennas be ready for the market? Part I,” Signal
Processing Magazine, IEEE, vol. 22, no. 2, pp. 87–92, March 2005.
[30] J. Rinne and M. Renfors, “Pilot spacing in orthogonal frequency division multiplexing systems on practical channels,” Consumer Electronics, IEEE Transactions on, vol. 42, no. 4, pp. 959–962, Nov 1996.
[31] M. -H. Hsieh and C. -H. Wei, “Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels,” Consumer Electronics, IEEE Transactions on, vol. 44, no. 1, pp. 217–225, Feb 1998.
[32] G. Knagge, L. Davis, G. Woodwar, and S.Weller, “VLSI preprocessing techniques for MUD and MIMO sphere detection, ”in Communications Theory Workshop, 2005.Proceedings.6th Australian, Feb. 2005, pp. 221–228.
[33] T. -D. Chiueh and P. -Y. Tsai, OFDM Baseband Receiver Design for Wireless Communications. Wiley Publishing, 2007.
[34] P. Luethi, C. Studer, S. Duetsch, E. Zgraggen, H. Kaeslin, N. Felber, and W. Fichtner, “Gram-Schmidt-based QR decomposition for MIMO detection: VLSI implementation and comparison,” in Circuits and Systems, 2008. APCCAS 2008. IEEE Asia Pacific Conference on, 30 2008-Dec. 3 2008, pp. 830–833.
[35] P. Luethi, A. Burg, S. Haene, D. Perels, N. Felber, and W. Fichtner, “VLSI Implementation of a High-Speed Iterative Sorted MMSE QR Decomposition,” in Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on, May 2007, pp.1421–1424.
[36] C. K. Singh, S. H. Prasad, and P. T. Balsara, “VLSI Architecture for Matrix Inversion using Modified Gram-Schmidt based QR Decomposition,” in VLSI Design,
2007.Held jointly with 6th International Conference on Embedded Systems.,20th International Conference on, Jan. 2007, pp. 836–841.
[37] R. -H. Lai, “Design of An 8×8 MIMO Detector for Wireless Communications,”
Master’s thesis, Department of Electrical Engineering, Nation Tsing Hua University, Hsinchu, Taiwan, 2009.
[38] M. Shabany and P. Gulak, “Scalable VLSI architecture for K-best lattice decoders,” in Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on, May 2008, pp.940–943.
[39] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes 3rd Edition: The Art of Scientific Computing. New York, NY, USA: Cambridge University Press, 2007.
[40] M. Borgmann and H. Bolcskei,“Interpolation-based efficient matrix inversion for MIMO-OFDM receivers,” in Proc. 38th Asilomar Conf. Signals, Systems, Computers, Nov. 2004, pp. 1941–1947, Vol. 2.
[41] D. Wubben and K. -D. Kammeyer, “Interpolation-based successive interference cancellation for per-antenna-coded MIMO-OFDM systems using P-SQRD,” in Smart
Antennas,2006.WSA2006.InternationalITGWorkshopon, Mar. 2006.