研究生: |
張程勛 Chang, Cheng-Hsun |
---|---|
論文名稱: |
在特性網路中以指數隨機圖模型取樣分析重要中心點的統一方法 Exponentially Twisted Sampling: a Unified Approach for Centrality Analysis in Attributed Networks |
指導教授: |
張正尚
Chang, Cheng-Shang |
口試委員: |
李端興
Lee, Duan-Shin 林華君 Lin, Hwa-Chun 黃之浩 Huang, Chih-Hao |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 39 |
中文關鍵詞: | 重要性 、有號網路 、指數隨機圖模型取樣 |
外文關鍵詞: | centralities, signed networks, exponentially twisted sampling |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在最近關於網路科學的研究中,指導教授與學長們研究出了一個專門用於分析無方向性網路和有方向性網路的機率框架。該框架的關鍵概念是取樣,透過對稱和不對稱的雙變量機率分布去對網路做取樣,接著使用取得的雙變量機率分布去定義各種觀念,包括重要性、相對重要性、社群和模塊化。
在這本論文中主要的目標就是把原本的定義延伸到特性網路上,並使用指數隨機圖模型取樣法去對雙變量機率分布做取樣。我們主要的貢獻就是我們找到一個方法去分析特性網路,而特性網路也包含我們常見的有號網路。利用取樣的方法,我們可以去定義在特性網路中有哪些重要性。影響力重要性和信任重要性可以在有號網路中去定義重要性。在特性網路中的點具有屬於自己的特性,而特定廣告影響力重要性可以幫我們完美的定義重要性。在真實世界數據實驗的結果可以看到在不同定義重要性的方法會看到不一樣的結果,且隨著溫度的改變結果也會不盡相同。還有更多的實驗是為了探討溫度的重要性。
In our recent works, we developed a probabilistic framework for structural analysis in undirected networks and directed networks. The key idea of that framework is to sample a network by a symmetric and asymmetric bivariate distribution and then use that bivariate distribution to formerly defining various notions, including centrality, relative centrality, community, and modularity. The main objective of this thesis is to extend the probabilistic definition to attributed networks, where sampling bivariate distributions by exponentially twisted sampling. Our main finding is that we find a way to deal with the sampling of the attributed network including signed network. By using the sampling method, we define the various centralities in attributed networks. The influence centralities and trust centralities correctly show that how to identify centralities in signed network. The advertisement-specific influence centralities also perfectly define centralities when the attributed networks that have node attribute. Experimental results on real-world dataset demonstrate the different centralities with changing the temperature. Further experiments are conducted to gain a deeper understanding of the importance of the temperature.
[1] L. C. Freeman, “A set of measures of centrality based on betweenness,” Sociometry, pp. 35–41, 1977.
[2] M. Newman, Networks: an introduction. Oxford university press, 2010.
[3] L. C. Freeman, “Centrality in social networks conceptual clarification,” Social networks, vol. 1, no. 3, pp. 215–239, 1978.
[4] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela, “Community structure in time-dependent, multiscale, and multiplex networks,” science, vol. 328, no. 5980, pp. 876–878, 2010.
[5] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Gossip algorithms: Design, analysis and applications,” in INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE, vol. 3. IEEE, 2005, pp. 1653–1664.
[6] C.-S. Chang, C.-Y. Hsu, J. Cheng, and D.-S. Lee, “A general probabilistic framework for detecting community structure in networks,” in INFOCOM, 2011 Proceedings IEEE. IEEE, 2011, pp. 730–738.
[7] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.
[8] V. Latora and M. Marchiori, “A measure of centrality based on network efficiency,” New Journal of Physics, vol. 9, no. 6, p. 188, 2007.
[9] E. Estrada and J. A. Rodriguez-Velazquez, “Subgraph centrality in complex networks,” Physical Review E, vol. 71, no. 5, p. 056103, 2005.
[10] A. Mohammadinejad, R. Farahbakhsh, and N. Crespi, “Employing personality feature to rank the influential users in signed networks,” in Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom)(BDCloud-SocialCom-SustainCom), 2016 IEEE International Conferences on. IEEE, 2016, pp. 346–353.
[11] H. Kim and R. Anderson, “Temporal node centrality in complex networks,” Physical Review E, vol. 85, no. 2, p. 026107, 2012.
[12] D. Taylor, S. A. Myers, A. Clauset, M. A. Porter, and P. J. Mucha, “Eigenvectorbased centrality measures for temporal networks,” Multiscale Modeling & Simulation, vol. 15, no. 1, pp. 537–574, 2017.
[13] J. Jung, W. Jin, L. Sael, and U. Kang, “Personalized ranking in signed networks using signed random walk with restart,” in Data Mining (ICDM), 2016 IEEE 16th International Conference on. IEEE, 2016, pp. 973–978.
[14] J. Weng, E.-P. Lim, J. Jiang, and Q. He, “Twitterrank: finding topic-sensitive influential twitterers,” in Proceedings of the third ACM international conference on Web search and data mining. ACM, 2010, pp. 261–270.
[15] C.-S. Chang, C.-J. Chang, W.-T. Hsieh, D.-S. Lee, L.-H. Liou, and W. Liao, “Relative centrality and local community detection,” Network Science, vol. 3, no. 4, pp. 445–479, 2015.
[16] C.-S. Chang, D.-S. Lee, L.-H. Liou, S.-M. Lu, and M.-H. Wu, “A probabilistic framework for structural analysis in directed networks,” in Communications (ICC), 2016 IEEE International Conference on. IEEE, 2016, pp. 1–6.
[17] S. Brin and L. Page, “Reprint of: The anatomy of a large-scale hypertextual web search engine,” Computer networks, vol. 56, no. 18, pp. 3825–3833, 2012.
[18] M. Rosvall and C. Bergstrom, “Maps of information flow reveal community structure in complex networks,” arXiv preprint physics.soc-ph/0707.0609, 2007.
[19] R. Lambiotte, J.-C. Delvenne, and M. Barahona, “Random walks, markov processes and the multiscale modular organization of complex networks,” IEEE Transactions on Network Science and Engineering, vol. 1, no. 2, pp. 76–90, 2014.
[20] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons, 2012.
[21] C.-S. Chang, Performance guarantees in communication networks. Springer Science & Business Media, 2012.
[22] S. Juneja and P. Shahabuddin, “Rare-event simulation techniques: an introduction and recent advances,” Handbooks in operations research and management science, vol. 13, pp. 291–350, 2006.
[23] L. A. Adamic and N. Glance, “The political blogosphere and the 2004 us election: divided they blog,” in Proceedings of the 3rd international workshop on Link discovery. ACM, 2005, pp. 36–43.
[24] J. Leskovec, L. Backstrom, and J. Kleinberg, “Memetracker data,” 2008.
[25] S. Osiński and D. Weiss, “Carrot2: Design of a flexible and efficient web information retrieval framework,” in International atlantic web intelligence conference. Springer, 2005, pp. 439–444.