簡易檢索 / 詳目顯示

研究生: 陳新瑜
論文名稱: 一、聚苯胺於非水溶液之電化學行為的研究 二、含氟衍生聚苯胺之合成、鑑定暨應用
指導教授: 韓建中
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 96
語文別: 中文
論文頁數: 416
中文關鍵詞: 聚苯胺
外文關鍵詞: polyaniline
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    導電高分子如聚苯胺因具有獨特的光電性質而有廣泛的用途,在有機發光二極體及太陽能電池等應用方面,相關材料之電子能階(HOMO/LUMO)為影響元件效能的關鍵因素之一,關於聚苯胺的HOMO值,在文獻上僅有Heeger團隊利用特殊的hole-only LED元件,配合穿隧理論推算其HOMO能階約為4.8 eV。但因LED元件製備的複現性不易掌握且影響元件性能的參數眾多,故欲藉由此法取得可靠之數值,實非易事。一般研究是利用非水溶液之CV來推算共軛分子之HOMO與LUMO能階,但由於聚苯胺之結構特殊,具有無數多的不同氧化態,且文獻上關於聚苯胺非水溶液CV的研究結果,無論是氧化峰之數目或氧化電位值等皆不盡相同且眾說紛紜,關於其缺欠複現性之因,迄無定論。在此研究中,我們透過多種不同的方法和工具如CV、UV-vis、ATR-IR、XPS等重新探討聚苯胺在非水溶液中之CV行為,發現其與聚苯胺之起始氧化態有關,同時有建立了以CV精測其HOMO/LUMO值之可靠方法,結果顯示,不同起始氧化態之聚苯胺(由LB form至PB form)其HOMO/LUMO能階的確都不相同。此外,我們也因此建立了利用非水溶液電化學的方法取得穩定的完全氧化態之聚苯胺,並用來進行CRS反應,不僅可成功的製得約含50 %側鏈取代基之聚苯胺衍生物,且可證明其PB form之結構。
    文獻報導之含側鏈取代基的聚苯胺,其往往會造成導電度大幅下降,一般文獻上皆歸因於其側鏈取代基之立體障礙或電子效應之影響。但近年來我們利用同步還原與取代反應(CRS)引進含硫烷之側鏈取代基的研究發現,真正造成導電度的下降與其主鏈的共軛缺陷結構有關。由於氟具有許多特殊性質(如最大之電負度,最小之原子半徑,高親油性質以及獨特之化學反應性等等),因此氟衍生聚苯胺應是一有趣的材料,但文獻上所報導之氟衍生聚苯胺具有高氧化電位、明顯藍位移之UV-vis吸收光譜、幾無氧化還原活性、及極差的導電度,且錯誤的將其皆歸咎於氟之強拉電子之效應。因此,我們欲利用同步還原與取代反應(CRS)方法合成氟衍生聚苯胺,以保有其主鏈之高共軛結構,用以探討氟取代基之真正電子效應。由一系列的實驗之結果證實,我們首次成功的利用CRS方法,以氟離子為親核試劑在適當的溶液中合成氟衍生聚苯胺。且亦成功的發展出多次重複進行CRS反應的方法,可因此合成一系列含有特定氟取代量之聚苯胺衍生物(F-Pan系列樣品)。此外,即使當其氟取代量高達100 mol%以上時,其導電度亦僅有些微之下降(~0.1 S/cm),且由UV-vis、IR、CV之研究結果,發現其皆可保有與非衍生聚苯胺一樣良好之氧化還原能力。反之,由氧化共聚合方法(OCP)所合成之含氟之聚苯胺共聚合物(Pan2F系列樣品)導電度極差(10-2~10-5 S/cm)、具有較高的氧化電位Eox1值與明顯藍位移的UV吸收光譜以及極差的氧化還原能力。經由上述的詳細比對的研究結果顯示,由CRS方法所合成之聚苯胺衍生物仍保有原先聚苯胺主鏈的規則性,而由OCP方法所合成之含氟之聚苯胺共聚合物,則在其主鏈上產生大量的1,3-linkage共軛缺陷結構,因而導致有效共軛長度大幅下降,這是造成其導電度下降的主要原因。此外,由CRS方法所得之F-Pan系列樣品,當氟取代量增加時,其CV之氧化電位不升反降,暗示著在此高共軛系統下,氟可透過其孤對電子進行共振回饋電子置主鏈上。為了驗證此論點,而NMR為一更理想且更直接之工具,可來檢驗其主鏈上電子密度的多寡及分布情況。因此,我們利用鈀金屬耦合反應合成一系列含氟苯胺寡聚物之模型分子(如PDA-F、PDA-3F、及pentamer-F),且透過各種NMR實驗技術(如1H NMR,13C NMR,1H-Homodecouple,NOE,HSQC,HMBC)來明確標定所有1H及13C的化學位移。結果顯示當氟嫁接到這些高共軛性之主鏈系統後,確實表現出非常明確的推電子效應,展現其特殊之電子效應。此外,我們發現在適當條件下,氟衍生聚苯胺可與不同之親核試劑進行置換反應,生成含醇基或烷基取代基之衍生聚苯胺。利用CRS方法將O或C系統的親核試劑直接取代到聚苯胺主鏈上此為文獻首例。故此論文之結果可大大擴展CRS反應之適用範圍,用來合成各種特殊之衍生聚苯胺。


    Abstract
    Owing to their novel electrooptical properties, conducting polymers like polyanilines (Pans) have been demonstrated to be particularly useful in many applications. Regarding to the applications in light-emitting diodes and solar cells, both HOMO and LUMO energy levels of the employed materials are the critical parameters for the performances of the devices. In literature, the HOMO level of polyaniline(Pan)has only been estimated once by Heeger et. al. as 4.8 eV via a rather complicated approach, i.e., based on a specially prepared hole-only LED device and in combination with the Fowler-Nordheim tunneling theory. Due to the enormous number of fabrication parameter, it is not easy to prepare the LED devices with reproducible quality. Hence, the HOMO level measured based on the LED device may not be sufficiently reliable. The HOMO and LUMO levels of conjugated molecule are often estimated from the on-set potential of the oxidation or reduction peak of its CV curve. However, the previous literature reports indicated that the redox behaviors of Pan in nonaqueous electrolytic solutions were very complicated and actually somewhat confusing. Different reports often showed different CV curve shapes having different number of oxidation peaks and values of oxidation potential. Such non-reproducible and irreversible electrochemical behaviors of Pan in nonaqueous solution were not yet fully understood up to now. Herein, we re-investigated the CV behaviors of Pan in nonaqueous electrolytic solutions in conjunction with ATR-IR, in-situ UV-Vis, and XPS studies. Interestingly, we found that the CV behaviors of Pan in nonaqueous electrolytic solutions are highly depending on its initial oxidation status of Pan. Based on such findings, we have developed a reliable method to estimate the HOMO/LUMO values of Pan. The study suggests that Pans of different initial oxidation states (from LB to PB form) should have different HOMO/LUMO values. Moreover, we have also developed a method to obtain a stable film of fully oxidized PB form of Pan, by which highly substituted Pan(~ 50 mol%)can be prepared via the CRS route. Such results were also useful in confirming the structure and properties of the PB form.
    In literatures, substituted Pans have always been found to exhibit much lower conductivities than that of the unsubstituted Pan and the results had been attributed to the substituent’s steric hindrance effect (for R and OR) or electron withdrawing effect (for halogen). However, our previous study indicated that, based on the result of butylthio-substituted polyaniline obtained via the CRS route, the unusually low conductivity of alkyl- or alkoxy-substituted Pans is arisen from their backbone conjugation defects (e.g., 1,3-ring linkage structures) as induced by the substitutent group during the growth of the polymer chains. Because of the unusual properties associated with the fluorine atom, such as high electronegativity, small atomic radius, high lipophilicity, and unique chemical reactivity, the fluorinated-polyaniline should be highly interested. But all the previously reported poly(fluoroaniline)s prepared by the OCP method were found to have greatly increased oxidation potential, significantly blue-shifted UV-vis absorption, lack of redox activity, and much lower conductivity. Therefore, we decided to develop a feasible method for introducing the F-substituent to the preformed polyaniline backbones via the CRS method. Via this synthetic approach, the backbone structure of the fluorinated-polyanilines (F-Pans) could be maintained the same as the parent unsubstituted Pan, so that the electron effect of the substituent group could be fairly and reliably evaluated. We then have successfully synthesized a series of fluorinated-polyaniline(F-Pan)with controlled amounts of F-substituent. Surprisingly, the F-Pan samples prepared by the CRS method were found to be much highly conductive and electroactive than the Pan2F samples prepared from the OCP method. Even with a substitution degree of greater than 100 mol%, the obtained F-Pan showed only a slight decrease in its conductivity (~0.1 S/cm). Furthermore, the UV-vis, IR, and CV studies indicated that F-Pan have retained similar good redox activities as that of the unsubstituted Pan. On the other hand, the Pan2F samples prepared from conventional oxidative copolymerization(OCP)method were found to be pooly conductive (10-1~10-5 S/cm), with much higher oxidation potential Eox 1, significantly blue-shifted UV-vis absorptions, and extremely deactivated redox activity. The results of our thorough comparison studies indicated that the F-Pan samples prepared from the CRS method retained the same highly conjugated structure of the parent unsubstituted polyaniline, while Pan-2F samples prepared from the OCP method contained significant amounts of 1,3-linkage conjugation defects, which greatly shortened the effective conjugation extent of the backbone and dramatically reduced their conductivities. Furthermore, the CV results for the CRS-prepared F-Pan samples showed that, as the fluorination degree increased, its oxidation potential actually decreased and eventually became lower than its parent unsubstituted Pan. The results imply that the fluorine atoms on the highly conjugated polyaniline backbone may actually help to increase the electron density of the backbone through the resonance donation of their lone-pair electrons. To better understand the electronic behaviour of the F in the higher conjugated aniline systems, we have systhesized a series of conjugated aniline model compounds (PDA-F、PDA-3F、pentamer-F) and studied the compounds with various 1D and 2D NMR experiments (1H NMR、13C NMR、1H-homodecouple、NOE、HSQC、HMBC) to fully and unambiguously assign the chemical shifts for all the H and C of the compounds. The results clearly confirmed the resonance electron-donating effect of the fluorine atoms in these higher conjugated aniline systems. In addition, we found that the fluorine group in F-Pan can be replaced by other types of nucleophiles under some appropriate conditions to convert into the alkoxy- or alkyl-substituted Pans, which are otherwise very difficult to accomplish directly via the CRS method. Therefore, the results and findings of this dissertation can greatly expand the application scope of the CRS method for the preparation of various types of substituted-polyanilines.

    目錄 摘要 …………………………………………………………………I Abstract ……………………………………………………………….III 謝 誌 ………………………………………………………………VII 目錄 ……………………………………………………………...VIII 圖目錄 …………...…………………………………………………XIII 表目錄 ……………………………………………………………XXIV 縮寫對照表 XXVIII 第一章 文獻回顧 1 1-1 前言 2 1-2 導電高分子簡介 3 1-2-1 導電高分子 3 1-2-2 導電高分子的摻雜反應 5 1-3 導電高分子聚苯胺簡介 9 1-4 聚苯胺的合成 11 1-4-1 電化學方法合成聚苯胺 11 1-4-2 化學方法合成聚苯胺 11 1-4-3 聚苯胺聚合機構 12 1-5 聚苯胺摻雜反應與導電度的研究 14 1-5-1 完全摻雜態聚苯胺 14 1-5-2 自身摻雜態聚苯胺 15 1-5-3 二次摻雜態聚苯胺 16 1-6 聚苯胺的性質鑑定 17 1-6-1 UV-vis 光譜研究 17 1-6-2 XPS 光譜研究 19 1-6-3 IR 光譜研究 21 1-7 聚苯胺衍生物的研究 28 1-7-1 苯環上含有取代基之聚苯胺衍生物 28 1-7-2 氮上烷基取代之衍生聚苯胺(poly(N-alkylaniline)s) 29 1-7-3 聚苯胺共聚合物(aniline copolymers) 30 1-8 研究動機 31 1-9 參考文獻 33 第二章 實驗內容 37 2-1 藥品 38 2-2 聚苯胺的合成 40 2-2-1 電化學方法(Electrochemical polymerization method) 40 2-2-2 化學氧化法(Oxidative polymerization method) 41 2-3 傳統氧化聚合法合成聚苯胺衍生物 43 2-3-1 含2-氟取代之聚苯胺(x:y □ 1:0) 43 2-3-2 含2-氟取代之聚苯胺共聚合物(x:y □ 3:1) 44 2-3-3 含2-氟取代之聚苯胺共聚合物(x:y □ 1:1) 44 2-3-4 含2-氟取代之聚苯胺共聚合物(x:y □ 1:4) 45 2-3-5 含3-氟取代之聚苯胺(x:y □ 1:0) 45 2-3-6 含3-氟取代之聚苯胺共聚物 (x:y = 1:1) 45 2-3-7 含3-氟取代之聚苯胺共聚物 (x:y = 1:4) 45 2-3-8 含4-氟取代之聚苯胺(x:y □ 1:0) 46 2-3-9 含4-氟取代之聚苯胺共聚物 (x:y = 1:1) 46 2-3-10 含4-氟取代之聚苯胺共聚物 (x:y = 1:4) 46 2-4 控制聚苯胺及其衍生物的氧化還原狀態 47 2-4-1 聚苯胺的還原 47 2-4-2在水溶液電解質中以電化學方式控制聚苯胺及其衍生物的氧化態 47 2-4-3 在非水溶液電解質中以電化學方式控制聚苯胺於高氧化態 48 2-5 利用同步還原與取代反應(CRS)合成聚苯胺衍生物 49 2-5-1 合成含 25 mol% F取代量的 F-Pan25 固態薄膜 49 2-5-2 合成高取代量 F-Pan50,F-Pan75,F-Pan100,及F-Pan125 固態薄膜 …………………………………………………………………..50 2-6 聚苯胺及其衍生物的摻雜反應 52 2-6-1 完全摻雜態聚苯胺及其衍生物的製備 52 2-7 儀器量測與樣品製備 53 2-7-1 電化學儀器 53 2-7-2 傅立葉轉換紅外線光譜儀(FTIR) 53 2-7-3 紫外光-可見光-近紅外線光譜儀 (UV-vis-NIR Spectroscopy) …………………………………………………………………..54 2-7-4 電子能譜儀 ( X-ray Photoelectron Spectroscopy;XPS) 55 2-7-5 導電儀 ( Conductivity Measurement Equipment ) 56 2-7-6 核磁共振光譜(NMR) 58 2-7-7 凝膠滲透層析術(Gel permeation chromatograph;GPC) 58 第三章 聚苯胺於非水溶液之電化學行為的研究 60 3-1 簡介 61 3-2 實驗部分 64 3-2-1 材料合成 64 3-2-2 儀器鑑定 64 3-3 結果與討論 65 3-3-1 電化學的研究 65 3-3-2 ATR-IR光譜的結果與討論 67 3-3-3 In-situ UV-vis-NIR光譜的結果與討論 71 3-3-4 XPS 結果與討論 77 3-3-5 不同氧化態聚苯胺之HOMO量測 83 3-3-6 利用非水溶液製備PB form 之聚苯胺 90 3-3-7 不同氧化態聚苯胺之LUMO量測 97 3-4 結論 103 3-5 參考文獻 105 第四章 含氟衍生聚苯胺之合成與鑑定 107 4-1 簡介 108 4-2 實驗部分 109 4-2-1 材料合成 109 4-2-2 儀器鑑定 110 4-3 結果與討論 111 4-3-1 合成氟衍生聚苯胺之反應條件的結果與討論 111 4-3-2 XPS 結果與討論 134 4-3-3 UV-vis 結果與討論 144 4-3-4 IR結果與討論 147 4-3-5 CV 量測結果與討論 150 4-3-6 Conductivity 結果與討論 152 4-3-7 SIMS 之結果與討論 154 4-3-8 GPC 之結果與討論 158 4-3-9 NMR 量測結果與討論 160 4-4 結論 163 4-5 參考文獻 164 第五章 利用傳統氧化聚合法合成含氟取代之聚苯胺共聚物並與由同步還原與取代反應法所合成之含氟取代之聚苯胺衍生物做比較 166 5-1 簡介 167 5-2 實驗部分 168 5-2-1 材料合成 168 5-2-2 儀器鑑定 169 5-3 結果與討論 170 5-3-1 產率和XPS 之結果與討論 170 5-3-2 Conductivity 之結果與討論 189 5-3-3 UV-vis光譜之結果與討論 191 5-3-4 ATR-IR 結果與討論 201 5-3-5 CV之結果與討論 213 5-3-6 GPC結果與討論 217 5-3-7 NMR結果與討論 221 5-3-8 氧化共聚合之反應機制的結果與討論 223 5-4 結論 228 5-5 參考文獻 230 第六章 含氟取代基之苯胺寡聚物之合成與鑑定 231 6-1 簡介 232 6-2 實驗部分 233 6-2-1 材料合成 233 6-2-2 儀器鑑定 243 6-3 結果與討論 244 6-3-1 NMR 結果與討論 244 6-3-2 XPS之結果與討論 257 6-3-3 UV結果與討論 263 6-3-4 CV 之結果與討論 265 6-4 結論 267 6-5 參考文獻 269 第七章 利用親核性試劑和氟衍生聚苯胺反應生成其他種類之衍生聚苯胺 270 7-1 簡介 271 7-2實驗部分 272 7-2-1 材料合成 272 7-2-2 儀器鑑定 272 7-3 結果與討論 273 7-3-1 引進醇基之結果與討論 273 7-3-2 引進硝化烷基之結果與討論 298 7-4 結論 313

    1. Natta, G.; Mazzanti, G.; Corradini, P. Atti Accad. Naz. Lince Rend. Cl. Sci. Fis. Mat. Natur. 1958, 25, 3.
    2. (a) Shirakawa, H.; Ikeda, S. Polym. J. 1971, 2, 231. (b) Ito, T.; Shirakawa, H.; Ikeda, S.; J. Polym. Sci., Polym. Chem. 1974, 12, 10.
    3. (a) Shirakawa,H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. J. Chem. Soc., Chem. Commun. 1977, 578. (b) Chiang, C. K.; Fincher, C. R.; Rark, Y. W.; Heeer, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G. Phys. Rev. Lett. 1977, 39, 1098.
    4. Handbook of chemistry and physics P. David Ed.; The Chemical Rubber Company. 1991.
    5. Diaz, A. F.; Kanazdwd, K. K. in “Extended Linear Chain Compounds”(G. S. Miller, ed.), Plenum, New York, 1982, p3.
    6. Baughman, R. M.; Bredas, J. L.; Elsenbaumer, R. L.; Shacklette, L. W. Chem. Rev. 1982, 82, 209.
    7. Kaneto, K.; Ura, S.; Yoshino, K.; Inuishi, Y. Jap. J. of App. Phys. 1984, 23, 189.
    8. MacDiarmid, A. G.; Chiang, J. C.; Halpern, M.; Huang, W. S.; Mu, S. L.; Somasir, N. L. D. Mol, Cryst. Liq. Cryst., 1985, 121, 173
    9. Heeger, A. L. Angew. Chem. 2001, 40, 2591
    10. Nigrey, P. J.; MacDiarmid, A. G.; Heeger, A. J.; J. Chem. Soc., Chem. Commun. 1979, 594
    11. Letheby, H. J. Chem. Soc. 1862, 15, 161.
    12. Mohilner, D. M.; Adams, R. N.; Argersinger, W. J. J. Am. Chem. Soc. 1962, 84, 3618.
    13. Watanabe, A. K.; Mori, K.; Iwasaki, Y.; Nakamura, Y. Macromolecules 1987, 20, 1793.
    14. Huang, W. S.; Humphrey, B. D.; MacDiarmid, A. G., J. Chem. Soc., Farady. Trans., 1986, 82, 2385.
    15. (a) Macdiarmid, A. G.; Epstein, A. J. Faraday Discuss Chem. Soc. 1989, 88, 317. (b) Focke, W. W.; Wenk, G. E.; Wei, Y. J. Phys. Chem. 1987, 91, 5813. (c) Macdiarmid, A. G.; Chiang, J. C.; Richter, A. F.; Somasiri, N. L. D.; Epstein, A. J. “Polyaniline : Sythesis and Characterization of the Emeraline Oxidation State by Elemental Analysis” in L. Alca’cer(ed). “Conducting Polymer” D. Reidel Pub. Comp. Dordrecht, Holland 1987, 105. (d) Travers,;J. P.; Chroboczek, J. ; Devreux, J.; Genoud, F. ; Nechtschein, M.; Syed, A.; Genies, E. M.; Tsintavis, C. Mol. Cryst. Liq. Cryst. 1985, 121, 195.
    16. Adams, P. N.; Monkman, A. P. Synth. Met. 1997, 87, 165.
    17. (a) Genies, E. M.; Syed, A. A.; Jsintavis, C. Mol. Cryst. Liq. Cryst. 1985, 121, 181. (b) Genies, E. M.; Jsintavis, C. Electroanal. Chem. 1985, 195, 109.
    18. Chiang, J. C.; MacDiarmid A. G. Synth. Met. 1986, 13, 193.
    19. (a) Han, C. C.; Elsenbaumer R. L. “New, Novel, and Generally Applicable Dopants for Conducting Polymers.” at the 1988 ICSM, Santa Fe, NM, USA. (b) Han, C. C.; Elsenbaumer, R. L. Synth. Met. 1989, 30, 123.
    20. Salaneck, W. R.; Lundstrom, I.; Haung, W. S.; MacDiarmid, A. G. Synth. Met. 1986, 13, 291.
    21. Patial, A. O.; Ikenoue, Y.; Wudl, F.; Heeger, A. J. J. Am. Chem. Soc. 1987, 109, 1858.
    22. Yue, J.; Epstein, A. J. J. Am. Chem. Soc. 1990, 112, 2800
    23. Yue, J.; Wang, Z. H.; Cromack, K. R.; Epstein, A. J.; MacDiarmid, A. G. J. Am. Chem. Soc. 1991, 113, 2665.
    24. MacDiarmid, A. G.; Epstein, A. J. Synth. Met. 1994, 65, 103.
    25. Albuquerque, J. E.; Mattoso, L. H. C.; Balogh, D. T.; Faria, R. M.; Masters, J. G.; MacDiarmid, A. G. Synth. Met. 2000, 113, 19.
    26. Lu, F. L.; Wudl, F.; Nowak, M.; Heeger, A. J. J. Am. Chem.Soc. 1986, 108, 8311.
    27. Stafstrom, S.; Bredas, J. L.; Epstein, A. J.; Woo, H. S.; Tanner, D. B.; Huang, W. S.; MacDiramid, A. G. Phys. Rev. Lett. 1987, 59, 1464.
    28. Sun, Y.; Macdiarmid, A. G.; Epstein, A. J. J. Chem. Soc., Chem. Common. 1990, 529.
    29. Cao, Y.; Smith, P.; Heeger, A. J. Synth. Met. 1989, 32, 263.
    30. Tang, J.; Jing, X.; Wang, B.; Wang, F. Synth. Met. 1988, 24, 231.
    31. Salaneck, W. R.; Lundstorm, T.; Hjertberg, T.; Duke, C. B.; Conwell, E.; Paton, A.; MacDiarmid, A. G., Somasiri, N. C. D.; Huang, W. S.; Richter, A. F. Synth. Met. 1987, 18, 291.
    32. (a) Kang, E. T.; Neoh, K. G.; Khor, S. H.; Tan, K. L.; Tan, B. T. J. Chem. Soc., Chem. Commun. 1989, 695. (b) Tan, K. L.; Tan, B. T. G.; Kang, E. T.; Neoh, K. G. Physical Review B 1989, 39, 8070.
    33. Watanabe, A.; Mori, K.; Mikuni, M.; Nakamura, Y.; Matsnda, M. Macromolecules 1989, 22, 3323.
    34. .NaKajima, T.; Harada, M.; Osawa, R.; Kawaqoe, T.; Furukawa, Y.; Harada, I. Macromolecules 1989, 22, 2644.
    35. Monkman, A. P.; Stevens, G. C.; Bloor, D. J. Phys. D : Appl. Phys. 1991, 24, 738
    36. X.-L. Wei, X. L.; Fahlman, M. and Epstein, A. J. Macromolecules 1999, 32, 3114
    37. Yue, J.; Epstein, A. J. Macromolecules 1991, 24, 4441.
    38. Kang, E. T.; Neoh, K. G.; Woo, Y. L.; Tan, K. L. Polym. Commun. 1991, 32, 412
    39. Wang, L.; Jing, X.; Wamg, F. Synth. Met. 1991, 41-43, 685.
    40. Huang, W. S.; Humphrey, B. D.; MacDiarmid, A. G., J. Chem. Soc. Farady. Trans., 1986, 82, 2385.
    41. Watanabe, A. K.; Mori, K.; Iwasaki, Y.; Nakamura, Y. Macromolecules 1987, 20, 1793.
    42. (a) Kabumoto, A.; Shinozaki, K. Synth. Met. 1988, 26, 349. (b) Kobayashi, T.; Yoneyama, H.; Tamara, H. J. Electroanal. Chem. 1984, 177, 293.
    43. Garcia, B.; Fusalba, F.; Bélanger, D. Can. J. Chem. 1997, 75, 1536.
    44. (a) Daifuku, H.; Kawagoe, T.; Yamamoto, N.; Ohsaka, T.; Oyama, N. J. Electroanal. Chem. 1989, 274, 313. (b) Desilvestro, J.; Scheifele, W.; Haas, O. J. Electrochem. Soc. 1992, 139, 2727.
    45. Fiordiponti, P.; Pistoia, G.; Electrochim. Acta 1989, 34, 215.
    46. Lapkowski, M.; Berrada, K.; Quillard, S.; Louarn, G.; Lefrant, S.; Pron, A. Macromolecules 1995, 28, 1233.
    47. Wei, Y.; Focke, W. W.; Wnek, G. E.; Ray, A.; MacDiarmid, A. G. J. Phys. Chem. 1989, 93, 495.
    48. Leclerc, M.; Guay, J.; Dao, L. H. Macromolecules 1989, 22, 649.
    49. D’Aprano, G.; Leclerc, M.; Zotti, G.; Schiavon, G. Chem. Mater. 1995, 7, 33
    50. Chevalier, J.-W.; Bergeron, J.-Y.; Dao, L. H. Macromolecules 1992, 25, 3325
    51. (a) Pandey, S. S.; Annapoorni, S.; Malhotra, B. D. Macromolecules 1993, 26, 3190. (b) Prevost, V.; Petit, A.; Pla, F. Synth. Met. 1999, 104, 79.(c) Conklin, J. A.; Huang, S. C.; Huang, S. M.; Wen, T.; Kaner, R. B. Macromolecules 1995, 28, 6522.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE