簡易檢索 / 詳目顯示

研究生: 陳凱嘉
Chen, Kai-Chia
論文名稱: 高頻寬氮化鎵發光二極體之研製及可見光通訊應用之分析
Fabrication of High Modulation Bandwidth GaN-Based Light-Emitting Diode and Analysis of Visible Light Communication Applications
指導教授: 吳孟奇
Wu, Meng-Chyi
口試委員: 王郁琦
劉文超
黃建璋
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 66
中文關鍵詞: 高頻光通訊發光二極體磊晶量子點
外文關鍵詞: high-speed, VLC, LED, epitaxy, quantum-dot
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著發光二極體的發展,許許多多的應用逐漸在此領域上延伸。發光二極體除了以高亮度、低功耗作為其標誌性特色之外,還有另外一個特性:頻寬調變特性。
    本篇論文以三五族半導體發光二極體作為題目進行頻寬、光性、電性的探討。並尋找合適之元件進行可見光通訊之分析。
    本篇論文主要分成兩大部分,元件之研製以及其光電特性探討及可見光通訊應用之分析,主要目的是以磊片發光區結構的改變來改善其光通訊傳輸的能力。在元件研製部分,我們四種不同磊片(分別為單層、三層量子井藍光磊片以及單層、三層量子井綠光磊片)進行同一元件的製程,並發現單層量子井磊片較三層量子井磊片具有較高電流密度以及較小的載子複合區域,造成載子生命週期的下降,以致元件可承載的頻寬上升。本篇文章亦由速率方程式推導發光二極體的轉移方程式,並利用ABC model 探討其中之物理機制,並推導出頻寬、光功率、發光區體積之關係並與實驗結果互相呼應。透過前述結論,本篇論文使用另外兩種以量子點作為發光區的磊片,進行其頻寬、光電特性之探討。相對於量子井磊片,量子點磊片因其具有極小之發光區,故得極高頻寬之特性。然因量子點之不均勻性導致對其電特性及光特性皆有影響,對此則以不同之元件大小以討論其光電特性影響。
    在光通訊分析之部分,經過頻寬、光強度之取捨,本文選擇以量子點磊片作為可見光通訊之元件。並以開關鍵控(On-Off Keying)以及正交分頻多工(Orthogonal Frequency Division Multiplexing) 作為分析方式測量錯誤率,進而得到其傳輸資料速度。最後總結,研發出在注入電流50mA情況下,主動區尺寸為50um 藍光量子點發光二極體可得1213MHz 之頻率響應,並在適當條件於可見光通訊裝置,主動區尺寸75um藍光量子點發光二極體可輸出7.617Gbps 之資料傳遞速度。


    Nowadays, a lot of applications are extending by the development of light-emitting diode. LED owns properties as high power intensity, low power consumption, etc. And it also has a useful property: frequency modulation. In this thesis, we take III-V semiconductor LED is the topic, experimenting the bandwidth, electrical property, and optic property. And seek a suitable candidate for visible light communication analysis.
    The thesis is divided mainly in two parts, device fabrication and its characteristic measurement, and analysis of VLC applications. The main idea is to module the active region structure in order to improve the ability of data transmission. In the device fabrication part, we prepare 4 types of epitaxy ( 1 pair blue light, 3 pairs blue light, 1 pair green light, and 3 pairs green light) being fabricated through the same process. We find that lesser quantum well pairs device will possess higher current density and smaller carrier recombination area, causing the carrier lifetime decreasing. That is, the device has higher modulation bandwidth. We also discuss the physical modeling based on rate equation and ABC model and derive the relationship between bandwidth, output intensity, and active region volume, and which matches the measurement result.
    Through the result from quantum well epitaxy analysis, we introduce quantum dot epitaxy which use quantum dot as the active region, and discussing its properties. Compared to quantum well type, quantum dot type has a very small active region and possesses a very high bandwidth. Because of the non-uniformity, the electrical and optical properties are affected. For this, device size variation is discussed.
    In the VLC analysis part, after trading off light output power and bandwidth, we choose quantum dot type device used in VLC system. And we use OOK and OFDM as analysis methods, measuring the bit error rate and finally get data rate. In conclusion, we develop a blue light emitting diode with mesa size of 50um under 50mA condition can achieve 1213MHz bandwidth. Under proper condition, the device with mesa size of 75um can transmit 7.617Gbps data rate.

    摘要 i Abstract iii 誌謝 v CONTENTS vi LIST OF FIGURES viii LIST OF TABLES xi Chapter 1 Introduction 1 1.1. Overview of light-emitting diodes 1 1.2. Motivation 1 1.3. Organization work 3 Chapter 2 Characterization of Parasitic Circuit, ABC Model, and Modulation Bandwidth on High-speed LEDs 7 2.1. Preface(basic theorem of high-speed LEDs) 8 2.1.1. Equivalent circuit model and parasitic parameters extraction 8 2.1.2. Coupled carrier equation and ABC model analysis 10 2.1.3. Differential analysis 12 2.2. Visible light communication data analysis model 15 2.2.1. On-off keying 15 2.2.2. Othogonal frequency division multiplexing 16 Chapter 3 Design of High-Speed LEDs 18 3.1. Preface 18 3.2. Device fabrication and experiment setup 19 3.2.1. The epitaxy of the device 19 3.2.2. Device fabrication 20 3.2.3. Experimental setup 26 Chapter 4 Characteristic of the High-Speed Light Emitting LEDs 34 4.1. Preface 34 4.2. The effect of quantum well numbers on electrical characteristics, optic characteristics, and RF characteristics 35 4.2.1. DC characteristics 35 4.2.2. Optic characteristics 36 4.2.3. RF characteristics 37 4.3. The effect of quantum dot LEDs on electrical characteristics, optic characteristics, and RF characteristics 40 4.3.1. DC Characteristics 40 4.3.2. Optic Characteristics 41 4.3.3. RF characteristics 43 4.4. Summary of design on high-speed LEDs 45 Chapter 5 Design, Fabrication and Characteristics of High-Speed LEDs for Visible Light Communication 51 5.1. Preface 51 5.2. Package process 52 5.2.1. LED for visible light cimmunication choosing 52 5.2.2. Process flow 53 5.3. VLC measurement result and discussion 55 5.3.1. OOK measurement result 55 5.3.2. OFDM measurement result 56 Chapter 6 Conclusions and Future Work 62 References 65

    [1] Wen-Chi Lee, “Optoelectronic devices with a Ga2O3 current confinement structure”, NCHU, 2014.
    [2] KUO, Yen-Kuang; CHANG, Jih-Yuan; CHEN, Jen-De. Numerical study on efficiency droop of blue InGaN light-emitting diodes. In: Physics and Simulation of Optoelectronic Devices XIX. International Society for Optics and Photonics, 2011. p. 793317.
    [3] ZHANG, Zi-Hui, et al. UVA light-emitting diode grown on Si substrate with enhanced electron and hole injections. Optics letters, 2017, 42.21: 4533-4536.
    [4] OLIVIER, Francois, et al. Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: A size effect study. Applied Physics Letters, 2017, 111.2: 022104.
    [5] ZHU, Shi-Chao, et al. GaN-based flip-chip parallel micro LED array for visible light communication. In: International Conference on Optoelectronics and Microelectronics Technology and Application. International Society for Optics and Photonics, 2017. p. 102441Y.
    [6] VINOGRADOV, Juri, et al. GaN-based cyan light-emitting diode with up to 1-GHz bandwidth for high-speed transmission over SI-POF. IEEE Photonics Journal, 2017, 9.3: 1-7.
    [7] MONAVARIAN, Morteza, et al. Explanation of low efficiency droop in semipolar (202¯1¯) InGaN/GaN LEDs through evaluation of carrier recombination coefficients. Optics express, 2017, 25.16: 19343-19353.
    [8] LIU, Wei, et al. Shockley–Read–Hall recombination and efficiency droop in InGaN/GaN multiple-quantum-well green light-emitting diodes. Journal of Physics D: Applied Physics, 2016, 49.14: 145104.
    [9] ZHANG, Zi-Hui, et al. On the hole accelerator for III-nitride light-emitting diodes. Applied Physics Letters, 2016, 108.15: 151105.
    [10] SHI, Jin-Wei, et al. III-nitride-based cyan light-emitting diodes with GHz bandwidth for high-speed visible light communication. IEEE Electron Device Letters, 2016, 37.7: 894-897.
    [11] YIN, Yu-Feng, et al. High-speed modulation from the fast mode extraction of a photonic crystal light-emitting diode. Journal of Applied Physics, 2016, 119.1: 013103.
    [12] SHEN, Chao, et al. High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth. Optics express, 2016, 24.18: 20281-20286.
    [13] FERREIRA, Ricardo XG, et al. High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications. IEEE Photonics Technology Letters, 2016, 28.19: 2023-2026.
    [14] LIN, Chun-Han, et al. High modulation bandwidth of a light-emitting diode with surface plasmon coupling. Ieee Transactions on Electron Devices, 2016, 63.10: 3989-3995.
    [15] DAVID, Aurelien, et al. Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling. Applied Physics Letters, 2016, 109.8: 083501.
    [16] NIPPERT, Felix, et al. Determination of recombination coefficients in InGaN quantum-well light-emitting diodes by small-signal time-resolved photoluminescence. Japanese Journal of Applied Physics, 2016, 55.5S: 05FJ01.
    [17] LIAO, Chien-Lan, et al. High-speed light-emitting diodes emitting at 500 nm with 463-MHz modulation bandwidth. IEEE Electron Device Letters, 2014, 35.5: 563-565.
    [18] KARPOV, Sergey. ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: a review. Optical and Quantum Electronics, 2015, 47.6: 1293-1303.
    [19] TSONEV, Dobroslav, et al. A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride. IEEE Photonics Technology Letters, 2014, 26.7: 637-640.
    [20] LIU, Guangyu, et al. Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes. IEEE Photonics Journal, 2013, 5.2: 2201011-2201011.
    [21] LANGER, Torsten, et al. Origin of the “green gap”: Increasing nonradiative recombination in indium‐rich GaInN/GaN quantum well structures. physica status solidi c, 2011, 8.7‐8: 2170-2172.
    [22] PIPREK, Joachim. Efficiency droop in nitride‐based light‐emitting diodes. physica status solidi (a), 2010, 207.10: 2217-2225.
    [23] WANG, Lai, et al. Abnormal Stranski–Krastanov Mode Growth of Green InGaN Quantum Dots: Morphology, Optical Properties, and Applications in Light-Emitting Devices. ACS applied materials & interfaces, 2018, 11.1: 1228-1238.
    [24] RAJABI, Kamran, et al. Improving modulation bandwidth of c-plane GaN-based light-emitting diodes by an ultra-thin quantum wells design. Optics express, 2018, 26.19: 24985-24991.
    [25] HONGDA, Chen, et al. Advances and prospects in visible light communications. Journal of Semiconductors, 2016, 37.1: 011001.
    [26] TIAN, Pengfei, et al. Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes. Applied Physics Letters, 2012, 101.23: 231110.
    [27] Z. Wei, et al., “Gbps Real-time NRZ-OOK Visible Light Communication System Based on a Packaged Single Layer Quantum Dot Blue Micro-LED: First Fabrication and Demonstration,” in Proc. Int. Conf. 2019 Asia Communi. and Photonics (ACP) Conference, M4D.2, (2019).
    [28]https://www.futurelearn.com/courses/occupational-health-developing-countries/0/steps/13106
    [29] https://www.mactronic.com.tw/vlc

    QR CODE