研究生: |
張維軒 Chang, Wei-Shuan |
---|---|
論文名稱: |
低成本機械放大機構精密微位移量測與致動系統設計與開發 Design and Development of Low-Cost Precision Micro-displacement Sensing and Actuation Systems based on Mechanical Amplification Mechanisms |
指導教授: |
曹哲之
TSAO, CHE-CHIH |
口試委員: |
宋震國
SUNG, CHENG-KUO 蕭德瑛 SHAW, DEIN |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 189 |
中文關鍵詞: | 精密位移感測器 、撓性放大機構 、不等傾角機構 |
外文關鍵詞: | precision displacement sensor, flexible magnification mechanism, uneven-legs tilting mechanism |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的為設計開發以機械式放大機構為基礎的低成本次微米級位移感測裝置及位移致動裝置,並將之結合成一低成本的精密致動系統。此位移感測器裝置的基本原理係將欲量測之次微米位移透過一多層槓桿機構放大百倍至10微米等級後,以霍爾元件讀取放大後的位移。此前第一代試驗機實驗研究顯示,多層槓桿機構之放大率重現性良好,故經使用光學或渦電流計校準後,霍爾元件讀數可以判讀次微米位移,重複精度為0.4 m。本研究重點為將裝置縮小化,試驗機尺寸將由82×28×24mm將其縮小至25×11×12 mm,3層槓桿減為2層槓桿。位移致動器則是將一不等傾角機構與平行四連桿機構組成一三明治結構,使機構側搖時產生縮小的高度差用以修正感測器所量測到的誤差。此前實驗研究已展示1000倍縮小率,可以在天頂方向行微米級運動,最大行程為30微米。本研究重點為改良第一代試驗機,使其可以進退兩方向運動,並確保運動的重複精度,同時使機構也可以在斜向或水平方向運動。最後將位移感測裝置及位移致動裝置結合成一精密致動系統。由於此系統組合使用簡單機構與低成本組件即可得到精密位移,故本研究有一定的商業潛力。
This research develops a low-cost micro displacement sensor, a low-cost micro-displacement actuator, both based on mechanical magnification mechanisms, and a low-cost precision actuation system combining the sensor and the actuator. The principle of the micro displacement sensor is to magnify submicron displacement through a multi-layer linkage structure by one hundred times into millimeter range. This displacement is then measured by a hall sensor. Based on a first generation prototype, this work reduces the number of arms of the mechanical mechanism used in the micro displacement sensor from 3 to 2 and the overall size from 82×28×24mm to 25×11×12 mms while maintaining measurement range at 10 m with measurement precision of 0.5m and resolution of 0.092μm. The micro-displacement actuator is constructed based on an Uneven-Legs Tilting mechanism sandwiched between two parallel four-bar linkage and is capable of providing a reduction of displacement by a factor 100 to 1000, depending on specific mechanisms. An analytical model was developed for designing the mechanism for desired load and displacement range. This work develops a prototype of an actuator, bases on flexural hinge mechanisms, capable of 5 to 40 m displacement output with precision of 0.34μm and resolution of 0.14μm. A combined sensor and actuator system was made to apply closed-loop control of actuation setting and further improved the accuracy to 0.2μm. The simple construction using low-cost components of the system indicates its commercial potential.
[1] 曾宜鈞,「低成本精密位移感測器設計與開發」,國立清華大學碩士論文,2018。
[2] Micro Epsilon, “capaDTCT 6110 Datasheet”, retrieved 2019 from, https://www.micro-epsilon.com/download/products/cat-capa/dax--capaNCDT-6110--en.html#page=2&zoom=Fit.
[3] Micro Epsilon, retrieved 2019 from, https://www.micro-epsilon.com/.
[4] Kaman, “KD-2306 Datasheet”, retrieved 2019 from, http://www.kamansensors.com/pdf_files/Kaman_KD-2306_data_sheet_web.pdf.
[5] Kaman, retrieved 2019 from, https://www.kaman.com/.
[6] Micro Epsilon, “ induSensor catalog”, retrieved 2019 from, https://www.micro-epsilon.com/download/products/cat--induSENSOR--en.pdf.
[7] Micro Epsilon, “ optoNCDT 1320 Datasheet”, retrieved 2019 from, https://www.micro-epsilon.com/download/products/cat-optoncdt/dax--optoNCDT-1320--en.html#page=2&zoom=Fit.
[8] Keyence, “Digital Contact Displacement Sensor”, Product Catalog
[9] Keyence, retrieved 2019 from, https://www.keyence.com.tw/index.jsp.
[10] Keyence, “Color Confocal Laser Displacement meter”, Product Catalog
[11] Honeywell, “SS495A catalog”, retrieved 2019 from, https://sensing.honeywell.com/SS495A-linear-and-angle-sensor-ics.
[12] Honeywell, retrieved 2019 from, https://www.honeywell.com/.
[13] THORLABS, “6 mm Travel Stepper Motor Actuator”, retrieved 2019 from, https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1881.
[14] THORLABS, retrieved 2019 from, https://www.thorlabs.com/.
[15] PI, “P-844 Preloaded Piezo Actuators”, retrieved 2019 from, https://www.physikinstrumente.com/en/products/linear-actuators/nanopositioning-piezo-actuators/p-844-preloaded-piezo-actuators-101210/#specification.
[16] PI, retrieved 2019 from, https://www.physikinstrumente.com/en/.
[17] 張智維、洪瑀,「複合式精密位移平台之精密致動機構」,國立清華大學專題研究,2018。
[18] Che-Chih Tsao & Chih-Hsiang Chen, “Cascaded Mirror Array: design and demonstration of low-cost light-weight digital scanning”, 23 October 2017, retrieved 2019 from, https://link.springer.com/article/10.1007/s00542-017-3612-5
[19] 黃智達,「工具機運動 垂直度的量測與計算」,財團法人精密機械研究發展中心,8/17/2018,2019檢自http://www.maonline.com.tw/article_inside.php?i=15.
[20] Keyence, “Digital Contact Displacement Sensor”, Product Catalog
[21] “ISO230-2: Determination of accuracy and repeatability of positioning numerically controlled axes”, international standard, 2006
[22] THORLABS, “6 mm Travel Stepper Motor Actuator”, retrieved 2019 from, https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1881
[23] Patrick Merken, Olivier Smal, “Mechanical Based Circular Notch Hinge Design”, 2007, retrieved 2019 from, https://orbi.uliege.be//bitstream/2268/25229/1/LMF-D47.pdf
[24] WIKIPEDIA, “5083 aluminum alloy”, 3 October 2019, retrieved 2020 from, https://en.wikipedia.org/wiki/5083_aluminium_alloy
[25] J. Gilbert Kaufman, “Properties of Aluminum Alloys”, Axial-Stress Fatigue Strengths at Various Stress Ratios, 2002, p.292.
[26] Richard G. Budynas, J. Keith Nisbett, “Shigley’s Mechanical Engineering Design”, Fatigue Failure Resulting from Variable Loading, 2015, p. 273~349.
[27] Joseph E. Shigley, Charles R. Mischke, “Standard handbook of machine design 2nd edition”, Marin Size Factor, 1996, 13.13 https://www.academia.edu/30701970/STANDARD_HANDBOOK_OF_MACHINE_DESIGN
[28] MiSUMi,「圓線彈簧 外徑基準 鋼琴線型WF・WL」,2020檢自https://tw.misumi-ec.com/vona2/detail/110302604030/?ProductCode=WF6-15
[29] TowerPro, “MG996R”, 2014, retrieved 2020 from, http://www.towerpro.com.tw/product/mg996r/
[A1] Lion Precision. “Capacitive Sensor TechNote LT03-0020”, 2012, retrieved 2019 from, http://www.lionprecision.com/tech-library/technotes/cap-0020-sensor-theory.html#contents
[A2] Memstec, Products Introduction, retrieved 2019 from, http://www.memstec.com.tw/product.php?pid=164.
[A3] Lion Precision, “Eddy-Current Linear Displacement Sensors An Overview”, retrieved 2019 from, http://www.lionprecision.com/eddy-current-sensors/index.html.
[A4] Andrew J. Fleming, “A Review of nanometer resolution position sensors: Operation and Performance”, ELSEVIER Sensors and Actuators A: Physical, 2013, p.106-126.
[A5] Sensor and Actuators, “How Magnetostrictive Sensor Works”, retrieved 2019 from, http://sensors-actuators-info.blogspot.tw/2009/08/magnetostriction-is-property-of.html.
[A6] Keyence, “Laser Displacement Sensor Technology Book”, retrieved 2019 from, https://www.controldesign.com/assets/10WPpdf/100208_Keyence_LaserSensor.pdf.
[A7] MTI Instruments Inc, “An Introduction To Laser Triangulation Sensors ”, 8/24/2014, retrieved 2019 from, https://www.azosensors.com/article.aspx?ArticleID=523.
[A8] Keyence, “Digital Contact Displacement Sensor”, Product Catalog
[A9] Keyence, “Color Confocal Laser Displacement meter”, Product Catalog
[B1] Eion, “Ball screw”, 6/27/2008, retrieved 2019 from, http://www.aua.com.tw/Blogger/?PID=1018.
[B2] THORLABS, “6 mm Travel Stepper Motor Actuator”, retrieved 2019 from, https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1881.
[B3] ChainShine, “Gears and Racks”, 11/13/2013, retrieved 2019 from, http://chainshine79.pixnet.net/blog.
[B4] KYMCO, “Camshaft”, 12/30/2015, retrieved 2019 from,
https://www.moto7.net/2015/12/vvcsdvthyper-vetc.html/2.
[B5] Design Aerospace, “actuator-overview”, retrieved 2019 from,
http://daerospace.com/actuator-hydraulic/actuator-description/.
[B6] Brian Patrick Trease, “A Survey and Comparison of Smart Material Linear Actuators”, University of Michigan, 2001.
[B7] Baike, “Piezoelectricity”, 3/23/2009, retrieved 2019 from, http://tupian.baike.com/a1_87_72_01300000168780123779723830850_jpg.html
[B8] Zureks, “Magnetostriction”, 1/1/2008, retrieved 2019 from, https://zh.wikipedia.org/wiki/%E7%A3%81%E8%87%B4%E4%BC%B8%E7%BC%A9#/media/File:Magnetostriction_by_Zureks.gif.