研究生: |
劉亮巖 Liu, Liang Yen |
---|---|
論文名稱: |
可程式化數位壓力控制器之設計與三維列印 Design and 3D printing of Programmable Digital Pressure Controller |
指導教授: |
蘇育全
Su, Yu Chuan |
口試委員: |
陳宗麟
Chen, Tsung Lin 陳紹文 Chen, Shao Wen |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 數位壓力控制器 、彈性體複合3D結構 、DLP-立體光刻 、微流體系統 、經濟的選擇 |
外文關鍵詞: | Digital pressure control, 3D structure with an elastomer diaphragm, DLP-Stereolithography, microfluidic systems, economic alternative |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們已經成功實現了利用程式化和自動控制的方式在晶片上製作一個具有數位型的控制壓力系統,以及實現了具有復雜功能混合結構的3D製造和集成的方案。並且配合製作一個夾雜在輸入壓力和參考壓力之間的彈性體複合3D結構隔膜,用於過濾掉不穩定高壓壓力所產生的波動,引導壓力輸出後的穩定性及精確值之範圍。由D / A轉換的方式設定出固定的參考壓力,因此壓力的輸出可以在這之間快速和精確地切換。為了製造所需的3D混合結構,本系統利用了DLP-立體光刻的方式製作此3D混合結構,並且將此結構使用於PDMS複製的PMMA部件和模具。對於目前現有的微流體系統而言,通常都是藉由調節多個注射器泵來推動流體的流動,然而此方式的成本昂貴,並且難以放大。為了解決對於具有可擴展性的方式而我們也證明了使用氣動致動器的方式驅動流體流動,可以針對此控制方式進行改進。並且提出了在晶片上完成一個具有數位化的壓力控制系統,其中,取代了其龐大和昂貴的裝置問題,對於微流體系統之關鍵相當重要。相較於先前所開發出的裝置結構結果相比,我們所開發出的結構裝置顯示了此精度並且提升了結構的功能。在某些壓力水平之間的切換僅需要少於0.1秒即可完成所有作動。此外,展現的製造和集成過程為聚合物微加工模式,提供了強大和經濟的選擇,增加了其克制畫畫的多樣性。因此,可以藉由本系統所開發的數位型壓力弄置系統,並且利用氣體動驅動的方式以實現微流體在芯片上和軟機器人的複雜和自動化之控制。
We have successfully demonstrated an on-chip digital pressure control scheme that can be readily automated and programmed, and a 3D fabrication and integration scheme that can realize hybrid structures with sophisticated functions. A composite 3D structure with an elastomer diaphragm sandwiched between input and reference pressures is utilized to filter out fluctuation and guide the pressure output. The reference pressure, which is set by a D/A converter, and therefore the pressure output can switch rapidly and precisely between levels on demand. To fabricate the desired 3D hybrid structures, a DLP-Stereolithography process is developed, which prints PMMA parts and molds for PDMS duplication. For many existing microfluidic systems, their functions are achieved passively by adjusting the flows driven by multiple syringe pumps, which are costly and difficult to scale up. To address the need for scalability and improved controllability, active schemes using pneumatic actuation have been demonstrated. The presented on-chip pressure controllers, which can replace their bulky and costly counterparts, are crucial for microfluidic systems. Compared to the previously published results, our scheme shows improvements in accuracy and functionality. It takes less than 0.1 seconds to switch between certain pressure levels. Furthermore, the demonstrated fabrication and integration process provides a powerful and economic alternative for polymer microfabrication. As such, sophisticated and automated control of pneumatically driven microfluidic chips and soft robots can potentially be realized.
[1] Jia Min Lee, Meng Zhang, Wai Yee Yeong, “Characterization and evaluation of 3D printed microfluidic chip for cell processing, ” Microfluid Nanofluid, pp. 1-15, Dec. 2015.
[2] Justyna Skowyra, Katarzyna Pietrzak, Mohamed A. Alhnan, “Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing, ” ELSVIER, pp. 11-17, Feb. 2015.
[3] Aliaa I. Shallan, Petr Smejkal, Monika Corban, Rosanne M. Guijt, and Michael C. Breadmore, “Cost-Effective Three-Dimensional Printing of Visibly Transparent Microchips within Minutes, ” American Chemical Society, pp. 3124-3130, vol.86, Feb. 2014.
[4] T.Bourouina, A. Bosseboeuf and J. P. Grandchamp, “Design and simulation of an electrostatic micropump for drug-delivery applications, ”Journal of Micromechanics and Microengineering, vol. 7, pp. 186-188, 1997.
[5] M. M. Teymoori and E. Abbaspour-Sani, “Design and simulation of a novel electrostatic peristaltic micromachined pump for drug-delivery applications, ” Sensors and Actuators A, vol. 117, pp. 222-229, 2005.
[6] J. Kan, Z. Yang, T. Peng, G. Cheng and B. Wu, “Design and test of a high-performanc piezo-electric micropump for drug-delivery, ” Sensors and Actuators A, vol. 121, pp. 151-161, 2005.
[7] Q. Cui, C. Liu and X. F. Zha, “Study on a piezoelectric micropump for the controlled drug-delivery system, ” Microfluidics and Nanofluidics, vol. 3, pp. 377-390, 2007.
[8] Chih-Hao Wang and Gwo-Bin Lee, “ Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection, ” ELSVIER, vol. 21, pp. 419-425, Dec. 2004.
[9] Ali Asgar S. Bhagat, Preetha Jothimuthu and Ian Papautsky, “ Photodefinable polydimethylsiloxane (PDMS) for rapid lab-on-a-chip prototyping, ” The Royal Society of Chemistry, vol. 7, pp. 1192-1197, Jun. 2007.
[10] Steven J. Keating1, Maria Isabella Gariboldi1, William G. Patrick1, Sunanda Sharma1, David S. Kong, Neri Oxman, “3D Printed Multimaterial Microfluidic Valve, ”PLOS ONE, vol. 10, pp. 1-12, Aug. 2016.
[11] Hiroyuki Moriguchi, Takayuki Kawaiab and Yo Tanaka, “Simple bilayer on-chip valves using reversible sealability of PDMS, ” The Royal Society of Chemistry, vol. 5, pp. 5237-5243, Dec. 2014.
[12] Bobak Mosadegh, Tommaso Bersano-Begey, Joong Yull Park, Mark A. Burnsc and Shuichi Takayama, “Next-generation integrated microfluidic circuits, ”Lab on a Chip, vol. 11, pp. 2813-2818, July. 2011.
[13] Bo-Chih Lin and Yu-Chuan Su, “On-demand liquid-in-liquid droplet metering and fusion utilizing pneumatically actuated membrane valves,” MICROMECHANICS AND MICROENGINEERING , Sep. 2008.
[14] Anthony K. Au, Nirveek Bhattacharjee, Lisa F. Horowitz, Tim C. Chang and Albert Folch, “3D-printed microfluidic automation,”Lab on a Chip, vol. 15, pp. 1934-1941, Feb. 2015.
[15] Martin D. Brennan, Megan L. Rexius-Hall and David T. Eddington, “A 3D-Printed Oxygen Control Insert for a 24-Well Plate,” PLOS ONE, vol. 10, pp. 1-9, Sep. 2015.
[16] Ho Nam Chan, Yangfan Chen, Yiwei Shu, Yin Chen, Qian Tian and Hongkai Wu, “Direct, one‑step molding of 3D‑printed structures for convenient fabrication of truly 3D PDMS microfluidic chips,” Microfluid Nanofluid, vol. 19, pp. 9-18, Jan. 2015.
[17] Yongha Hwang, Omeed H. Paydar and Robert N. Candle, “3D printed molds for non-planar PDMS microfluidic channels,” ELSVIER, vol. 226, pp. 137-142, Feb. 2015.
[18] Roni Ginzburg-Turgeman, Jean-Baptiste Guion and Daniel Mandler, “Improving the adhesion of polymethacrylate thin films onto indium tin oxide electrodes using a silane-based“Molecular Adhesive” ,”Springer, vol. 15, pp. 2401-2407, Jun. 2011.
[19] Chad I. Rogers, Kamran Qaderi, Adam T. Woolley and Gregory P. Nordin, “3D printed microfluidic devices with integrated valves,” Publishing LLC, vol. 9, pp. 016501-1-016501-9, Feb. 2015.
[20] Chad I. Rogers, Joseph B. Oxborrow, Ryan R. Anderson, Long-Fang Tsai, Gregory P. Nordin and Adam T. Woolley, “Microfluidic valves made from polymerized polyethylene glycol diacrylate,” ELSVIER, vol. 191, pp. 438-444, Oct. 2013.
[21] S. Russo1, T. Ranzani1, J. Gafford1, C.J. Walsh and R.J. Wood, “Soft pop-up mechanisms for micro surgical tools: design and characterization of compliant millimeter-scale articulated structures,” Robotics and Automation (ICRA), pp. 750-757, Jun. 2016.
[22] Feiqiao Yu, Mark A. Horowitzb and Stephen R. Quake, “Microfluidic serial digital to analog pressure converter for arbitrary pressure generation and contaminationfree flow control,” Lab on a chip, vol. 13, pp. 1911-1918, Mar. 2013.
[23] Shen, Feng; Du, Wenbin; Kreutz, Jason E, “Digital PCR on a SlipChip,” Lab on a chip, vol. 10, pp. 2666-2672, Jun. 2010.
[24] W.Y . Zhang, G. S. Ferguson and S. Tatic-Luci, “ELASTOMER-SUPPOR CT OE LD D WELDING FOR ROOMT EMPERATURWEA FER-LEVEL BONDING,” IEEE, pp. 741-744, 2004.
[25] Brandon R. Bruhn, Thomas B. H. Schroeder, Suyi Li, Yazan N. Billeh, K.W. Wang and Michael Mayer, “Osmosis-Based Pressure Generation: Dynamics and Application,” PLOS ONE, vol. 9, pp. 1-10, Mar. 2014.
[26] Daniela Rus and Michael T. Tolley, “Design, fabrication and control of soft robots,” NATURE vol. 521, pp. 467-475, May. 2015.
[27] 徐晧,「滲透式軟性致動器的設計與三維列印」,國立清華大學工程與系統科學系碩士論文,2016