研究生: |
卓憶如 Cho, Yi Ju |
---|---|
論文名稱: |
有機金屬鈣鈦礦太陽能電池之電荷傳輸層與鈣鈦礦組成研究 Carrier Transporting Layers and Perovskite Composition Studies of Organometallic Perovskite Solar Cells |
指導教授: |
林皓武
Lin, Hao Wu |
口試委員: |
吳忠幟
Wu, Chung Chih 朱治偉 Chu, Chih Wei 林子超 Lin, Tzu Chau |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 鈣鈦礦太陽能電池 、電荷傳輸層 、鈣鈦礦組成 |
外文關鍵詞: | perovskite solar cell, carrier transporting layer, perovskite composition |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究應用於有機金屬鈣鈦礦太陽能電池之電荷傳輸層與鈣鈦礦組成對元件表現的影響。
第一章,簡介太陽能電池的發展歷史並回顧有機金屬鈣鈦礦太陽能電池的研究發展與現況。
第二章,概述有機金屬鈣鈦礦太陽能電池之工作原理、光電特性、元件結構、材料分析、元件製備與量測。
第三章,我藉由不同電洞傳輸層的搭配來改善元件效率並對元件表現的影響做進一步探討。其中,以優化lithium bis(trifluoromethanesulphonyl)imide (Li-TFSI)摻雜量與曝氧時間後的2,2’,7,7’-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9’-spirobifluorene (spiro-OMeTAD) 元件具有最佳表現,其短路電流密度為22.50 mA/cm2,開路電壓為1.05 V,填充因子為0.62,能量轉換效率達14.6 %。
第四章,我使用自行合成的TiO2奈米粒子與商用高溫製程TiO2作為電子傳輸層,並對元件進行優化。其中,以優化後的TiO2奈米粒子元件具有最佳表現,其短路電流密度為21.28 mA/cm2,開路電壓為1.0 V,填充因子為0.62,能量轉換效率達13.2 %。
第五章,我調變鈣鈦礦主動層的組成成分,以formamidinium (HN=CHNH3+, FA+) 取代methylammonium (CH3NH3+, MA+) 並調變鹵素離子的組成以提升元件表現。其中,以20% Cl-離子摻雜的FAPbI3-xClx作為鈣鈦礦主動層的元件具有最佳表現,其短路電流密度為21.28 mA/cm2,開路電壓為1.0 V,填充因子為0.62,能量轉換效率達13.2 %。
第六章,我嘗試以兩階段製程製備鈣鈦礦太陽能電池元件,其最佳元件的短路電流密度為18.86 mA/cm2,開路電壓為1.04 V,填充因子為0.67,能量轉換效率達13.0 %。
In this thesis, I study on the carrier transporting layers and perovskite composition of organometallic perovskite solar cells.
In the first chapter, I briefly review the development of modern photovoltaics and organometallic perovskite solar cells.
In the second chapter, the operation principle and characteristics of organometallic perovskite solar cells are described, followed by the details of device structures, materials analyses, device fabrications and characteristics measurements.
In the third chapter, different hole transporting layers (HTLs) used in organometallic perovskite solar cells are studied. By optimizing the composition of HTL solution and fabrication methods, the device using 2,2’,7,7’-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9’-spirobifluorene (spiro-OMeTAD) as HTL delivers the highest power conversion efficiency (PCE) of 14.6 %, with a short circuit current density (Jsc) of 22.50 mA/cm2, an open circuit voltage (Voc) of 1.05 V and a fill factor (F.F.) of 0.62.
In the forth chapter, I use in-house synthesized TiO2 nanoparticle and commercial compact TiO2 as electron transporting layers (ETLs). After the optimization of devices, the one using TiO2 nanoparticle as ETL gives the highest PCE of 13.2 %, with Jsc of 21.28 mA/cm2, Voc of 1.0 V and F.F. of 0.62.
In the fifth chapter, the composition of perovskite absorbing layers is studied. By replacing methylammonium (CH3NH3+, MA+) with formamidinium (HN=CHNH3+, FA+) and fine-tuning the molar ratios of halogen, the optimized device shows the highest PCE of 13.2 %, with Jsc of 21.28 mA/cm2, Voc of 1.0 V and F.F. of 0.62.
In the sixth chapter, two-step process is used for the device frabrication, and the best device can deliver a PCE of 13.0 %, with Jsc of 18.86 mA/cm2, Voc of 1.04 V and F.F. of 0.67.
[1] A. E. Becquerel, C. R. Acad. Sci., 1839, 9, 145.
[2] C. E. Fritts, Am. J. Sci., 1883, 26, 465.
[3] N. R. E. Laboratory, http://www.nrel.gov/.
[4] R. S. Ohl, U. S. Patent No. 2,443,542 (15 June, 1948).
[5] S. W. Glunz, R. Preu, D. Biro, in Crystalline Silicon Solar Cells, Elsevier,
Oxford, 2012.
[6] D. M. Chapin, C. S. Fuller, G. L. Pearson, J. Appl. Phys., 1954, 25, 676.
[7] A. Slade, V. Garboushian, "27.6% Efficient Silicon Concentrator Solar Cells for
Mass Production", presented at 15th International Photovoltaic Science and
Engineering Conference, 2005.
[8] D. Antoine Descoeudres, Zachary C. Holman, Loris Barraud, IEEE J. Photovolt.,
2013, 3, 83.
[9] C. Battaglia, A. Cuevas, S. De Wolf, Energy Environ. Sci., 2016, 9, 1552.
[10] D. E. Carlson, C. R. Wronski, Appl. Phys. Lett., 1976, 28, 671.
[11] T. M. Hitoshi Sai, Appl. Phys. Lett., 2015, 106, 213902.
[12] N. Abdul-Manaf, H. Salim, M. Madugu, O. Olusola, I. Dharmadasa, Energies,
2015, 8, 10883.
[13] J. S. Ward, B. Egaas, R. Noufi, M. Contreras, K. Ramanathan, C. Osterwald, K.
Emery, "Cu(In,Ga)Se2 Solar Cells Measured Under Low Flux Optical Concentration",
presented at IEEE 40th Photovoltaic Specialist Conference, 2014.
[14] W. Shockley, H. J. Queisser, J. Appl. Phys., 1961, 32, 510.
[15] Q. Zhang, B. Kan, F. Liu, G. Long, X. Wan, X. Chen, Y. Zuo, W. Ni, H. Zhang,
M. Li, Z. Hu, F. Huang, Y. Cao, Z. Liang, M. Zhang, T. P. Russell, Y. Chen, Nat.
Photonics., 2015, 9, 35.
93
[16] J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, H. Yan, Nat. Energy,
2016, 1, 15027.
[17] X. Zhang, Q. Chen, H. Sun, T. Pan, G. Hu, R. Ma, J. Dou, D. Li, X. Pan,
Spectrochim. Acta. A, 2014, 118, 564.
[18] W. Kong, A. Rahimi-Iman, G. Bi, X. Dai, H. Wu, J. Phys. Chem. C, 2016, 120,
7606.
[19] S. Glenis, G. Tourillon, F. Garnier, Thin Solid Films, 1986, 139, 221.
[20] C. W. Tang, Appl. Phys. Lett., 1986, 48, 183.
[21] P. Peumans, S. R. Forrest, Appl. Phys. Lett., 2001, 79, 126.
[22] M. Hiramoto, M. Suezaki, M. Yokoyama, Chem. Lett., 1990, 19, 327.
[23] M. Hiramoto, H. Fujiwara, M. Yokoyama, J. Appl. Phys., 1992, 72, 3781.
[24] J. Xue, B. P. Rand, S. Uchida, S. R. Forrest, Adv. Mater., 2005, 17, 66.
[25] M. K. Nazeeruddin, E. Baranoff, M. Grätzel, Sol. Energy, 2011, 85, 1172.
[26] S. Namba, Y. Hishiki, J. Phys. Chem., 1965, 69, 774.
[27] D. Duonghond, N. Serpone, M. Grätzel, Helv. Chim. Acta., 1984, 67, 1012.
[28] J. Desilvestro, M. Graetzel, L. Kavan, J. Moser, J. Augustynski, J. Am. Chem.
Soc., 1985, 107, 2988.
[29] B. O'Regan, M. Gratzel, Nature, 1991, 353, 737.
[30] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska,
N. Vlachopoulos, M. Graetzel, J. Am. Chem. Soc., 1993, 115, 6382.
[31] M. K. Nazeeruddin, P. Pechy, M. Gratzel, Chem. Commun., 1997, 1705.
[32] M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P.
Liska, N. Vlachopoulos, V. Shklover, C.-H. Fischer, M. Grätzel, Inorg. Chem., 1999,
38, 6298.
[33] M. A. Green, A. Ho-Baillie, H. J. Snaith, Nat. Photonics., 2014, 8, 506.
94
[34] V. M. Goldschmidt, Naturwissenschaften, 1926, 14, 477.
[35] H. D. Megaw, Nature, 1945, 155, 484.
[36] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc., 2009, 131,
6050.
[37] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, N. G. Park, Nanoscale, 2011, 3, 4088.
[38] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon,
R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, N.-G. Park, Sci. Rep., 2012, 2,
591.
[39] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin,
M. Grätzel, J. Am. Chem. Soc., 2012, 134, 17396.
[40] J. M. Ball, M. M. Lee, A. Hey, H. J. Snaith, Energy Environ. Sci., 2013, 6, 1739.
[41] M. Liu, M. B. Johnston, H. J. Snaith, Nature, 2013, 501, 395.
[42] J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, T.-C. Wen,
Adv. Mater., 2013, 25, 3727.
[43] N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M. K. Nazeeruddin, J. Maier, M.
Grätzel, Angew. Chem. Int. Ed., 2014, 53, 3151.
[44] N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A.
Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza,
L. M. Herz, H. J. Snaith, Energy Environ. Sci., 2014, 7, 3061.
[45] H.-S. Ko, J.-W. Lee, N.-G. Park, J. Mater. Chem. A, 2015, 3, 8808.
[46] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Nature,
2015, 517, 476.
[47] M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J.-P. Correa-Baena,
P. Gao, R. Scopelliti, E. Mosconi, K.-H. Dahmen, F. De Angelis, A. Abate, A.
Hagfeldt, G. Pozzi, M. Graetzel, M. K. Nazeeruddin, Nat. Energy, 2016, 1, 15017.
95
[48] S. D. Stranks, H. J. Snaith, Nat. Nanotechnol., 2015, 10, 391.
[49] M. Hirasawa, T. Ishihara, T. Goto, J. Phys. Soc. Jpn., 1994, 63, 3870.
[50] I. B. Koutselas, L. Ducasse, G. C. Papavassiliou, J. Phys. Condens. Matter, 1996,
8, 1217.
[51] V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks,
M. M. Lee, G. Lanzani, H. J. Snaith, A. Petrozza, Nat. Commun., 2014, 5, 3586.
[52] D. S. Hamilton, R. S. Meltzer, M. D. Sturge, T. Ishihara, J. Lumin., 1994, 60,
269.
[53] K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, N. Miura, Solid State
Commun., 2003, 127, 619.
[54] T. C. Sum, N. Mathews, Energy Environ. Sci., 2014, 7, 2518.
[55] J. Even, L. Pedesseau, C. Katan, J. Phys. Chem. C, 2014, 118, 11566.
[56] C.-G. Wu, C.-H. Chiang, S. H. Chang, Nanoscale, 2016, 8, 4077.
[57] H.-S. Kim, N.-G. Park, J. Phys. Chem. Lett., 2014, 5, 2927.
[58] W. Yang, Y. Yao, C.-Q. Wu, J. Appl. Phys., 2015, 117, 95502.
[59] H.-H. Wang, Q. Chen, H. Zhou, L. Song, Z. S. Louis, N. D. Marco, Y. Fang, P.
Sun, T.-B. Song, H. Chen, Y. Yang, J. Mater. Chem. A, 2015, 3, 9108.
[60] X. Bao, Y. Wang, Q. Zhu, N. Wang, D. Zhu, J. Wang, A. Yang, R. Yang, J. Power
Sources, 2015, 297, 53.
[61] J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. Yang, W.-H. Chang, Z. Hong, H. Chen,
H. Zhou, Q. Chen, Y. Liu, N. De Marco, Y. Yang, Nat. Nanotechnol., 2016, 11, 75.
[62] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu,
Y. Yang, Science, 2014, 345, 542.
[63] H. Kim, K.-G. Lim, T.-W. Lee, Energy Environ. Sci., 2016, 9, 12.
[64] C.-H. Chiang, C.-G. Wu, Nat. Photonics., 2016, 10, 196.
96
[65] F. Wang, H. Yu, H. Xu, N. Zhao, Adv. Funct. Mater., 2015, 25, 1120.
[66] K. Sun, P. Li, Y. Xia, J. Chang, J. Ouyang, ACS Appl. Mater. Interfaces, 2015, 7,
15314.
[67] C.-G. Wu, C.-H. Chiang, Z.-L. Tseng, M. K. Nazeeruddin, A. Hagfeldt, M.
Gratzel, Energy Environ. Sci., 2015, 8, 2725.
[68] W. Yan, Y. Li, Y. Li, S. Ye, Z. Liu, S. Wang, Z. Bian, C. Huang, Nano Res., 2015,
8, 2474.
[69] S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang, Nano Lett.,
2015, 15, 3723.
[70] F. Hou, Z. Su, F. Jin, X. Yan, L. Wang, H. Zhao, J. Zhu, B. Chu, W. Li,
Nanoscale, 2015, 7, 9427.
[71] Q. Wang, Q. Dong, T. Li, A. Gruverman, J. Huang, Adv. Mater., 2016, DOI:
10.1002/adma.201600969.
[72] Z. Hawash, L. K. Ono, S. R. Raga, M. V. Lee, Y. Qi, Chem. Mater., 2015, 27,
562.
[73] J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Nat. Nanotechnol., 2014,
9, 927.
[74] W. Li, J. Fan, J. Li, Y. Mai, L. Wang, J. Am. Chem. Soc., 2015, 137, 10399.
[75] W. H. Nguyen, C. D. Bailie, E. L. Unger, M. D. McGehee, J. Am. Chem. Soc.,
2014, 136, 10996.
[76] J. H. Kim, P.-W. Liang, S. T. Williams, N. Cho, C.-C. Chueh, M. S. Glaz, D. S.
Ginger, A. K. Y. Jen, Adv. Mater., 2015, 27, 695.
[77] D. Zhao, M. Sexton, H.-Y. Park, G. Baure, J. C. Nino, F. So, Adv. Energy Mater.,
2015, 5, 1401855.
[78] Z. Yu, L. Sun, Adv. Energy Mater., 2015, 5, 1500213.
97
[79] J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee,
H.-j. Kim, A. Sarkar, K. NazeeruddinMd, M. Gratzel, S. I. Seok, Nat. Photonics.,
2013, 7, 486.
[80] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater.,
2014, 13, 897.
[81] Y. Bai, H. Yu, Z. Zhu, K. Jiang, T. Zhang, N. Zhao, S. Yang, H. Yan, J. Mater.
Chem. A, 2015, 3, 9098.
[82] C. Kuang, G. Tang, T. Jiu, H. Yang, H. Liu, B. Li, W. Luo, X. Li, W. Zhang, F.
Lu, J. Fang, Y. Li, Nano Lett., 2015, 15, 2756.
[83] W. Ke, G. Fang, J. Wang, P. Qin, H. Tao, H. Lei, Q. Liu, X. Dai, X. Zhao, ACS
Appl. Mater. Interfaces, 2014, 6, 15959.
[84] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Science,
2015, 348, 1234.
[85] N. A. Al-Omair, S. M. Reda, F. M. Al-Hajri, Adv. Mater. Phys. Chem., 2014, 4,
29.
[86] G. Yang, H. Tao, P. Qin, W. Ke, G. Fang, J. Mater. Chem. A, 2016, 4, 3970.
[87] X. Nie, S. Zhuo, G. Maeng, K. Sohlberg, Int. J. Photoenergy, 2009, 2009, 1.
[88] D. Yang, R. X. Yang, J. Zhang, Z. Yang, S. Z. Liu, C. Li, Energy Environ. Sci.,
2015, 8, 3208.
[89] Z. Liu, Q. Chen, Z. Hong, H. Zhou, X. Xu, N. De Marco, P. Sun, Z. Zhao, Y. B.
Cheng, Y. Yang, ACS Appl. Mater. Interfaces, 2016, 8, 11076.
[90] S. Hong, A. Han, E. C. Lee, K.-W. Ko, J.-H. Park, H.-J. Song, M.-H. Han, C.-H.
Han, Curr. Appl. Phys., 2015, 15, 574.
[91] J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K.
Ahn, C. Wolf, T.-W. Lee, S. H. Im, Adv. Mater., 2015, 27, 3424.
98
[92] Q. Ma, S. Huang, X. Wen, M. A. Green, A. W. Y. Ho-Baillie, Adv. Energy Mater.,
2016, DOI: 10.1002/aenm.201502202.
[93] F. Giordano, A. Abate, J. P. Correa Baena, M. Saliba, T. Matsui, S. H. Im, S. M.
Zakeeruddin, M. K. Nazeeruddin, A. Hagfeldt, M. Graetzel, Nat. Commun., 2016, 7,
10379.
[94] W. Qiu, U. W. Paetzold, R. Gehlhaar, V. Smirnov, H.-G. Boyen, J. G. Tait, B.
Conings, W. Zhang, C. B. Nielsen, I. McCulloch, L. Froyen, P. Heremans, D. Cheyns,
J. Mater. Chem. A, 2015, 3, 22824.
[95] Y. Wu, X. Yang, H. Chen, K. Zhang, C. Qin, J. Liu, W. Peng, A. Islam, E. Bi, F.
Ye, M. Yin, P. Zhang, L. Han, Appl. Phys. Expr., 2014, 7, 52301.
[96] S. Mahshid, M. Askari, M. S. Ghamsari, J. Mater. Process. Technol., 2007, 189,
296.
[97] T. Sugimoto, X. Zhou, A. Muramatsu, J. Colloid Interface Sci., 2003, 259, 43.
[98] B. K. Mutuma, G. N. Shao, W. D. Kim, H. T. Kim, J. Colloid Interface Sci., 2015,
442, 1.
[99] C. Leyva-Porras, A. Toxqui-Teran, O. Vega-Becerra, M. Miki-Yoshida, M.
Rojas-Villalobos, M. García-Guaderrama, J. A. Aguilar-Martínez, J. Alloys Compd.,
2015, 647, 627.
[100] B. Conings, L. Baeten, T. Jacobs, R. Dera, J. D’Haen, J. Manca, H.-G. Boyen,
APL Mater., 2014, 2, 81505.
[101] D. Liu, T. L. Kelly, Nat. Photonics., 2014, 8, 133.
[102] J. Song, E. Zheng, J. Bian, X.-F. Wang, W. Tian, Y. Sanehira, T. Miyasaka, J.
Mater. Chem. A, 2015, 3, 10837.
[103] A. K. Chandiran, M. Abdi-Jalebi, M. K. Nazeeruddin, M. Grätzel, ACS Nano,
2014, 8, 2261.
99
[104] C. Guiot, O. Spalla, Environ. Sci. Technol., 2013, 47, 1057.
[105] S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, G. Cui,
Chem. Mater., 2014, 26, 1485.
[106] C. Huang, N. Fu, F. Liu, L. Jiang, X. Hao, H. Huang, Sol. Energy Mater. Sol.
Cells, 2016, 145, 231.
[107] Q. Chen, H. Zhou, Y. Fang, A. Z. Stieg, T. B. Song, H. H. Wang, X. Xu, Y. Liu,
S. Lu, J. You, P. Sun, J. McKay, M. S. Goorsky, Y. Yang, Nat. Commun., 2015, 6,
7269.
[108] I. Borriello, G. Cantele, D. Ninno, Phys. Rev. B, 2008, 77, 235214.
[109] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J.
Snaith, Energy Environ. Sci., 2014, 7, 982.
[110] D. B. Mitzi, in Progress in Inorganic Chemistry, John Wiley & Sons Inc.,
1999.
[111] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok, Nano Lett., 2013, 13,
1764.
[112] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T.
Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science, 2013, 342, 341.
[113] W. Rehman, R. L. Milot, G. E. Eperon, C. Wehrenfennig, J. L. Boland, H. J.
Snaith, M. B. Johnston, L. M. Herz, Adv. Mater., 2015, 27, 7938.
[114] D. Liu, L. Wu, C. Li, S. Ren, J. Zhang, W. Li, L. Feng, ACS Appl. Mater.
Interfaces, 2015, 7, 16330.
[115] F. Shao, L. Xu, Z. Tian, Y. Xie, Y. Wang, P. Sheng, D. Wang, F. Huang, RSC
Adv., 2016, 6, 42377.
[116] N.-G. Park, Cryst. Eng. Comm., 2016, DOI: 10.1039/C6CE00813E.
[117] Y. Zhao, K. Zhu, J. Phys. Chem. C, 2014, 118, 9412.
100
[118] S. T. Williams, A. Rajagopal, C.-C. Chueh, A. K. Y. Jen, J. Phys. Chem. Lett.,
2016, 7, 811.