研究生: |
張建強 Chang, Chien-Chiang |
---|---|
論文名稱: |
分子束磊晶成長氧化鋁薄膜於砷化銦鎵/砷化鎵基板- 電性與化學成分與顯微結構之特性研究 Passivation of In0.2Ga0.8As/GaAs with MBE Al2O3 - Electrical, Chemical and Microstructural Characteristics |
指導教授: |
洪銘輝
Hong, Minghwei 郭瑞年 Kwo, Raynien |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 70 |
中文關鍵詞: | 分子束磊晶 、氧化鋁 、砷化銦鎵 、砷化鎵 、鈍化保護 、金氧半電容元件 |
外文關鍵詞: | Molecular beam epitaxy, Al2O3, InGaAs, GaAs, passivation, MOSCAP |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由使用超高真空分子束磊晶技術成長高介電常數氧化鋁薄膜於砷化銦鎵/砷化鎵基板,已經成功的證明此材料能有效鈍化砷化銦鎵半導體表面。我們利用高溫與室溫兩種的氧化鋁成長溫度分別製作閘極介電氧化層,實驗證明此氧化層即使升溫到攝氏800至850度仍然具有良好的熱穩定性,並由其所製作出來的金氧半電容元件也呈現優良的電性。由高解析穿透式電子顯微鏡的分析中可以得知,氧化層與半導體之間具有很明顯的界面,代表沒有任何的界面層於此處形成。在經過攝氏850度及氦氣環境下做快速退火處理的金氧半電容元件,在電性量測上具有良好的電容電壓特性,並計算此條件下的氧化鋁介電常數為8.1,及在閘極偏壓為平帶電壓減1伏特下所量測到的閘極到基板漏電流密度為1.2x10-4 A/cm2。由非臨場角度解析X光光電子能譜分析儀的分析可得知,在未退火處理的試片中並未發現氧化砷的存在,但偵測到有金屬態的鎵原子存在於氧化層之中,推測其可能對電性會造成一定程度的影響。此外,此系統下的費米能階在能帶中是能自由移動的,此特性對於砷化銦鎵金氧半場效應電晶體的運作上是相當關鍵且不可或缺的。
Molecular beam epitaxy (MBE) grown high κ dielectric Al2O3 film on In0.2Ga0.8As/ GaAs substrate, has been demonstrated an effective passivation for InGaAs surface. Utilizing the high-temperature and room-temperature growth methods for the oxide deposition, both the MOS capacitors reveal excellent electrical properties and good thermal stability up to 800-850oC. A sharp oxide/semiconductor interface without the interfacial layer formation was observed by the high-resolution transmission electron microscope (HR-TEM) analysis. Well behaved capacitance-voltage (C-V) characteristics of the MOSCAPs after rapid thermal annealing (RTA) to 850 °C under helium ambience, with the κ value of 8.1, a leakage current density of 1.2x10-4 A/cm2 at Vfb -1V was obtained. From the ex-situ angular-resolved X-ray photoelectron spectroscopy analysis, there is no arsenic oxide, but extra elemental gallium is existed in the oxide films for the as-grown sample, this would be acted as an important factor to influence the C-V behavior. Moreover, the Fermi level at the oxide/InGaAs interface was unpinned, critical for inversion-channel InGaAs MOSFET.
[1] S.M. Sze, Physics of semiconductor, 3rd edition, Wiley, New York (2002)
[2] G. E. Moore, Electronics 38, 114 (1965)
[3] http://www.intel.com/technology/mooreslaw/index.htm
[4] R. Chau et al., Nikkei Microdevices, p83-88 (Feb. 2002)
[5] International Technology Roadmap for Semiconductors, Semicconductor Industry Association (2001)
[6] Michel Houssa, High-k gate dielectrics, Institute of Physics, Bristol (2004)
[7] M. Depas, B. Vermeire, P. W. Mertens, R. L. Van Meirhaeghe and M. M. Heyns, Solid-State Electron. 38, 1465 (1995)
[8] S. H. Lo, D. A. Buchanan, Y. Taur and W. Wang, IEEE Electron Dev. Lett. 18, 209 (1997)
[9] D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, and G. Timp, Nature, London, 399, 758 (1999)
[10] J. B. Neaton, D. A. Muller, and N. W. Ashcroft, Phys. Rew. Lett. 85, 1298 (2000)
[11] H J Hubbard, D G Schlom, J Mater Res 11 2757 (1996). D G Schlom, J H Haenni, MRS Bull 27 198 (2002)
[12] J Robertson, J Vac Sci Technol B 18 1785 (2000)
[13] G. D. Wilk et al., Journal of Applied Physics, 89, 5243 (May 2001)
[14] J. Robertson and B. Falabretti, Materials Science and Engineering B 135, 267 (2006)
[15] J. Robertson and B. Falabretti, Journal of Applied Physics 100, 014111 (2006)
[16] T. S Lay et al., Solid-State Electronics 45, 45, 9, 1679-1682 (2001)
[17] W. C. Lee et al., Journal of Crystal Growth 278, 619-623 (2005)
[18] G. K. Dalapati et al., Appl. Phys. Lett. 91, 242101 (2007)
[19] H. C. Lin, P. D. Ye and G. D. Wilk, Appl. Phys. Lett. 87, 182904 (2005)
[20] Y. Xuan, H. C. Lin, P. D. Ye and G. D. Wilk, Appl. Phys. Lett. 88, 263518 (2006)
[21] H. Kim, P. C. McIntyre and K. C. Saraswat, Appl. Phys. Lett. 82, 106-108 (2003)
[22] S. Chatterjee, Y. Kuo and J. Lu, Microelectronic engineering 85, 202-209 (2008)
[23] J. Robertson, ECS Transactions, 19 (2) 579-591 (2009)
[24] E P Gusev et al., Tech Digest IEDM (2001) p20.1.1
[25] T. D. Lin et al., ECS Transactions, 19 (5) 351-360 (2009)
[26] P. D. Ye, ECS Transactions, 19 (2) 605-614 (2009)
[27] A. M. Green, J. Vac. Sci. Technol. A 11(4) (1993)
[28] P. D. Ye, ECS Transactions, 19 (2) 605-614 (2009)
[29] P. D. Ye, J. Vac. Sci. Technol. A 26(4) (2008)
[30] M. Hong, M. Passlack, J. P. Mannaerts, J. Kwo, S. N. G. Chu, N. Moriya, S. Y. Hou, and V. J. Fratello, J. Vac. Sci. Technol. B 14(3), 2279 (1996)
[31] F. Ren, M. W. Hong, W. S. Hobson, J. M. Kuo, J. R. Lothian, J. P. Mannaerts, J. Kwo, Y. K. Chen, and A. Y. Cho, IEDM 943 (1996)
[32] K. H. Shiu, T. H. Chiang, P. Chang, L. T. Tung, M. Hong, J. Kwo, and W. Tsai, Appl. Phys. Lett. 92, 172904 (2008)
[33] M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, Science 283, 1897 (1999)
[34] B. J. Skromme, C. J. Sandroff, E. Yablonovitch, and T. Gmitter, “Effects of passivating ionic films on the photoluminescence properties of GaAs,” Appl. Phys. Lett., vol. 51, no. 24, pp. 2022–2024 (Dec. 1987)
[35] G. G. Fountain, R. A. Rudder, S. V. Hattangady, R. J. Markunas, and J. A. Hutchby, “Demonstration of an n-channel inversion mode GaAs MISFET,” in IEDM Tech. Dig., pp. 887–889 (Dec. 1989)
[36] M. Akazawa, H. Ishii, and H. Hasegawa, “Control of GaAs and InGaAs insulator-semiconductor and metal-semiconductor interfaces by ultrathin molecular-beam epitaxy Si layers,” Jpn. J. Appl. Phys., vol. 30, no. 12B, pp. 3744–3749 (Dec. 1991)
[37] D. S. L.Mui, H. Liaw, A. L. Demirel, S. Strite, and H.Morkoc, “Electrical characteristics of Si3N4/Si/GaAs metal–insulator–semiconductor capacitor,” Appl. Phys. Lett., vol. 59, no. 22, pp. 2847–2849 (Nov. 1991)
[38] P. D. Ye, G. D. Wilk, J. Kwo, B. Yang, H.-J. L. Gossmann, M. Frei, S. N. G. Chu, J. P. Mannaerts, M. Sergent, M. Hong, K. Ng, and J. Bude, “GaAs MOSFET with oxide gate dielectric grown by atomic layer deposition,” IEEE Electron Device Lett., vol. 24, no. 4, pp. 209–211 (Apr. 2003)
[39] P. D. Ye, D. G. Wilk, B. Yang, S. N. G. Chu, K. K. Ng, and J. Bude, “Improvement of GaAs metal–semiconductor field-effect transistor drainsource breakdown voltage by oxide surface passivation grown by atomic layer deposition,” Solid State Electron., vol. 49, no. 5, pp. 790–794 (May 2005)
[40] M. M. Frank, G. D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y. J. Chabal, J. Grazul, and D. A. Muller, “HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition,” Appl. Phys. Lett., vol. 86, no. 15, pp. 152 904–152 906 (Apr. 2005)
[41] Y. Xuan, Y. Q. Wu, T. Shen, T. Yang, and P. D. Ye, “High performance Submicron inversion-type enhancement-mode InGaAs MOSFETs with ALD Al2O3, HfO2 and HfAlO as gate dielectrics,” in IEDM Tech. Dig., 637 (2007)
[42] H.C. Chin, M. Zhu, X.H. Tung, G.S. Samudra, and Y.C. Yeo, “In situ surface passivation and CMOS-compatible palladium-germanium contacts for surfacechannel gallium arsenide MOSFETs,” IEEE Electron Device Lett. 29, 553 (2008)
[43] J. Q. Lin, S. J. Lee, H. J. Oh, G. Q. Lo, D. L. Kwong, and D. Z. Chi, “Inversionmode self-aligned In0.53Ga0.47As n-channel metal-oxide-semiconductor fieldeffect transistor with HfAlO gate dielectric and TaN metal gate,” IEEE Electron Device Lett. 29, 977 (2008)
[44] S. Koveshnikov, N. Goel, P. Majhi, H. Wen, M. B. Santos, S. Oktyabrsky, V. Tokranov, R. Kambhampati, R. Moore, F. Zhu, J. Lee, and W. Tsai, “In0.53Ga0.47As based metal oxide semiconductor capacitors with atomic layer deposition ZrO2 gate oxide demonstrating low gate leakage current and equivalent oxide thickness less than 1 nm,” Appl. Phys. Lett. 92, 222904 (2008)
[45] Alfred Cho, Molecular beam epitaxy, AIP Press, New York.
[46] Marian A. Herman, Helmut Sitter, Molecular beam epitaxy :fundamentals and current status, Springer-Verlag, New York (1989)
[47] M.B. Panish, H. Temkin, Gas source molecular beam epitaxy: growth and properties of phosphorus containing III-V heterostructures, Springer-Verlag, New York (1993)
[48] John F. Watts, John Wolstenholme, An introduction to surface analysis by XPS and AES, Wiley, New York (2003)
[49] Simon Garrett, Introduction to Surface Analysis CEM924 (2001)
[50] 鮑忠興, 劉思謙, “近代穿透式電子顯微鏡實務”, 滄海書局 (2008)
[51] David B. Williams and C. Barry Carter, Transmission electron microscopy: a textbook for materials science, Plenum Press, New York (1996)
[52] 11. B. Fultz, J. M. Howe, Transmission electron microscopy and diffractometry of materials, Second Edition, New York (2002)
[53] Donald A. Neamen, Semiconductor physics and devices: basic principles, 3rd edition, McGraw-Hill (2003)
[54] E. H. Nicollian and J. R. Brews, MOS Physics and Technology, Wiley (1982)
[55] B. E. Deal, IEEE Trans. Electron Dev., vol. ED-27, p.p. 606-608, March (1980)
[56] Dieter K. Schroder, Semiconductor Material and Device Characterization, 3rd, edition, Wiley (2006)
[57] L. M. Terman, Solid-State Electron. 5, 285-299, Sept./Oct. (1962)
[58] B. J. Sealy, Semicond. Sci. Technol. 3, 448 (1988)
[59] Huang ML, Chang YC, Chang CH, Lee YJ, Chang P, Kwo J, Wu TB, Hong M, Appl. Phys. Lett. 87, 252104 (2005)