研究生: |
盛多司 Rajagopal Santhoshkumar |
---|---|
論文名稱: |
鈷金屬催化羰基化合物與烯炔分子進行 碳–氫鍵官能化反應之研究 Cobalt-Catalyzed Divergent C–H Functionalization of Carbonyl Compounds with Enynes |
指導教授: |
鄭建鴻
Cheng, Chien-Hong |
口試委員: |
劉瑞雄
Liu, Rai-Shung 蔡易州 Tsai, Yi-Chou 謝仁傑 Hsieh, Jen-Chieh 莊士卿 Chuang, Shih-Ching |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 201 |
中文關鍵詞: | 鈷 、水合芳基化反應 、水合醯基化反應 、碳–氫鍵活化反應 |
外文關鍵詞: | Cobalt, Hydroarylation, Hydroacylation, C-H activation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
過渡金屬催化反應是現在有機合成領域裡不可或缺的工具;其中,藉由π組件進行碳–氫鍵官能化反應,是一個很有吸引力的方法,應用於合成天然物與生物活性分子的骨架;並且具備綠色化學的概念,擁有原子與步驟經濟的效應。就此而言,本篇論文將發展三套鈷催化系統,以鈷金屬觸媒搭配不同配體,將羰基與分子內烯炔化合物進行偶合反應,得到高原子經濟效益的架構。此反應透過鈷金屬錯合物進行碳—氫鍵官能化反應或是羰基化合物進行嵌入反應,得到官能基轉換的二氫呋喃和吡咯烷衍生物,是存在於各種天然物或生物活性分子的骨架。這些反應均具有高位置及高立體選擇性,為了深入了解,將本文分為以下三個章節,分別討論關於鈷金屬觸媒搭配不同配體將羰基與烯炔化合物進行碳–氫鍵官能化反應。
第一章主要介紹烯炔類化合物與酯基或酮基分子,利用鈷金屬催化系統進行水合芳基化反應;此反應涉及鈷金屬五圓環並誘導鄰位-碳–氫鍵活化反應,以利進行官能基轉換,得到高產率的二氫呋喃和吡咯烷衍生物。
第二章描述鈷金屬催化系統將芳基醛與烯炔類化合物進行鄰位-碳–氫鍵活化反應,將芳香醛視為一個弱的配位基,誘導碳–氫鍵反應發生,並形成一個環狀過渡態,此反應過程速度快與合成經濟效應。
第三章節則以多樣地醛類化合物為主軸,利用鈷金屬催化系統,將烯炔類與醛類化合物進行水合芳基化反應。此反應的應用性廣,可將不螯合的脂肪醛、乙烯醛和芳香醛化合物,應用於乙烯酮分子之合成,均可得到高立體及位置選擇性。
ABSTRACT
Transition metal-catalyzed synthetic methods are the most important tools of modern organic synthesis. Particularly, direct C–H functionalization by uniting readily available π-components is an attractive methodology to synthesize natural products and bioactive skeletons in a single step. It is an atom- and stepeconomical method which is highly urged as one of the green process. In this regard, this thesis describes three new reactions that focus on the intramolecular coupling of enynes with carbonyl compounds, which were successfully achieved by tuning different kinds of ligands in the presence of air stable cobalt catalyst system in a highly atomeconomical manner. These reactions proceed via a novel cobaltacycle prompted C–H functionalization or insertion of carbonyl compounds to afford highly functionalized dihydrofuran and pyrrolidine derivatives which are found in various natural products and biologically active molecules. These reactions are highly stereo- and chemoselective. For better understanding, I divided this thesis into three chapters. These three chapters describe about ligand-controlled cobalt-catalyzed divergent C–H functionalization of carbonyl compounds with enynes.
Chapter 1 describes a cobalt-catalyzed hydroarylative cyclization of enynes with esters and ketones. The reaction proceeds via a novel five-membered cobaltacycle induced C–H activation to afford functionalized pyrrolidines and dihydrofurans in good to excellent yields.
Chapter 2 deals about cobalt-catalyzed ortho C–H functionalization of aromatic aldehydes with enynes. The reaction is highly step- and atomeconomical process to access cyclic skeletons via a weakly coordinating aromatic aldehyde-assisted C–H activation.
Chapter 3 illustrates a cobalt-catalyzed hydroacylative cyclization of enynes with aldehydes. The reaction proceeds well with nonchelating aliphatic, vinylic and aromatic aldehydes to afford vinylic ketones in highly stereo- and chemoselective manner.
Chapter1
1. Reviews: (a) Ikeda, S. Acc. Chem. Res. 2000, 33, 511. (b) Trost B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067. (c) Montgomery, J. Angew. Chem. Int. Ed. 2004, 43, 3890. (d) Jeganmohan, M.; Cheng, C.-H. Chem. Eur. J. 2008, 14, 10876. (e) Reichard, H. A.; McLaughlin, M.; Chen, M. Z.; Micalizio, G. C. Eur. J. Org. Chem. 2010, 391.
2. a) Trost, B. M.; Frederickson, M. U.; Rudd, M. T. Angew. Chem. Int. Ed. 2005, 44, 6630. (b) Trost, B. M.; Huang, X. Chem.-Asian J. 2006, 1, 469.
3. Wang, C.-C.; Lin, P.-S.; Cheng, C.-H. J. Am. Chem. Soc. 2002, 124, 9696
4. Chang, H.-T.; Jayanth, T. T.; Wang, C.-C.; Cheng, C.-H. J. Am. Chem. Soc. 2007, 129, 12032.
5. (a) Trost, B. M. Acc. Chem. Res. 1990, 23, 34. (b) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (c) Michelet, V.; Toullec, P. Y.; Genêt, J.-P. Angew. Chem. Int. Ed. 2008, 47, 4268. (d) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (e) Negishi, E.; Copéret, C.; Ma, S.; Liou, S.-Y.; Liu, F. Chem. Rev. 1996, 96, 365. (f) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96, 635.
6. a) Zhu, G.; Zhang, Z. Org. Lett. 2003, 5, 3645. b) Tsukamoto, H.; Suzuki, T.; Uchiyama, T.; Kondo, Y. Tetrahedron Lett. 2008, 49, 4174. c) Shen, K.; Han, X.; Lu, X. Org. Lett. 2012, 14, 1756. d) Chen, Y.; Lee, C. J. Am. Chem. Soc. 2006, 128, 15598. e) Jiang, M.; Jiang, T.; Bäckvall, J.-E. Org. Lett. 2012, 14, 3538. f) Kinder, R. E.; Widenhoefer, R. A. Org. Lett. 2006, 8, 1967; g) Jiang, M.; Bäckvall, J.-E. Chem. Eur. J. 2013, 19, 6571. h) Miura, T.; Shimada, M.; Murakami, M. J. Am. Chem. Soc. 2005, 127, 1094. i) Miura, T.; Shimada, M.; Murakami, M. Chem. Asian. J. 2006, 1, 868. j) Shintani, R.; Tsurusaki, A.; Okamoto, K.; Hayashi, T. Angew. Chem., Int. Ed. 2005, 44, 3909. k) Zhu, G.; Tong, X.; Cheng, J.; Sun, Y.; Li, D.; Zhang, Z. J. Org. Chem. 2005, 70, 1712.
7. a) Montgomery, J. Angew. Chem. Int. Ed. 2004, 43, 3890. b) Montgomery, J.; Savchenko, A. V. J. Am. Chem. Soc. 1996, 118, 2099. c) Montgomery, J.; Oblinger, E.; Savchenko, A. V. J. Am. Chem. Soc. 1997, 119, 4911. d) Montgomery, J.; Chevliakov, M. V.; Brielmann, H. L. Tetrahedron 1997, 53, 16449. e) Chevliakov, M. V.; Montgomery, J. Angew. Chem. Int. Ed. 1998, 37, 3144. f) Ni, Y.; Amarasinghe, K. K. D.; Montgomery, J. Org. Lett. 2002, 4, 1743. g) Ikeda, S.; Miyashita, H.; Sato, Y. Organometallics 1998, 17, 4316. h) Takachi, M.; Chatani, N. Org. Lett. 2010, 12, 5132.
8. Selected examples: a) Marco-Martínez, J.; López-Carrillo, V.; Buñuel, E.; Simancas, R.; Cárdenas, D. J. J. Am. Chem. Soc. 2007, 129, 1874.; b) Marco-Martínez, J.; Buñuel, E; Muñoz-Rodríguez, R.; Cárdenas, D. J. Org. Lett. 2008, 16, 3619. c) Gerdin, M.; Nadakudity, S. K.; Worch, C.; Moberg, C. Adv. Synth. Catal. 2010, 352, 2559. d) Camelio, A. M.; Barton, T.; Guo, F.; Shaw, T.; Siegel, D. Org. Lett. 2011, 13, 1517. e) Pardo-Rodríguez, V.; Buñuel, E.; Collado-Sanz, D.; Cárdenas, D. J. Chem. Commun. 2012, 48, 10517. f) Lautens, M.; Mancuso, J. Org. Lett. 2000, 2, 671.
9. a) H. Yamada, S. Aoyagi, C. Kibayash, Tetrahedron Lett. 1997, 38, 3027.b) Yang, C.-M.; Mannathan, S.; Cheng, C.-H. Chem. Eur. J. 2013, 19, 12212.
10. (a) Toullec, P. Y.; Genin, E.; Leseure, L.; Genêt, J.-P.; Michelet, V. Angew. Chem., Int. Ed. 2006, 45, 7427. (b) Amijs, C. H. M.; Ferrer, C.; Echavarren, A.M. Chem. Commun. 2007, 698. (c) Toullec, P. Y.; Chao, C.-M.; Chen, Q.; Gladiali, S.; Genêt, J.-P.; Michelet, V. Adv. Synth. Catal. 2008, 350, 2401. (d) Chao, C.-M.; Vitale, M. R.; Toullec, P. Y.; Genêt, J.-P.; Michelet,V. Chem.–Eur. J. 2009, 15, 1319.
11. (a) Tanaka, K.; Otake, Y.; Sagae, H.; Noguchi, K.; Hirano, M. Angew. Chem. Int. Ed. 2008, 47, 1312. (b) Tanaka, K.; Otake, Y.; Wada, A.; Noguchi, K.; Hirano, M. Org. Lett. 2007, 9, 2203. (c) Tsuchikama, K.; Kuwata, Y.; Tahara, Y.-K.; Yoshinami, Y.; Shibata, T. Org. Lett. 2007, 9, 3097.
12. a) Gao, K.; Lee, P.-S.; Fujita, T.; Yoshikai, N.J. Am. Chem. Soc. 2010, 132, 12249. b) Gao, K.; Yoshikai, N. J. Am. Chem. Soc. 2011, 133, 400.c) Gao, K.; Yoshikai, N. Acc. Chem. Res. 2014, 47, 1208.
13. (a) Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. Angew. Chem., Int. Ed. 2013, 52, 2207. (b) Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. Chem. Eur. J. 2013, 19, 9142. (c) Ikemoto, H.; Yoshino, T.; Sakata, K.; Matsunaga, S.; Kanai, M. J. Am. Chem. Soc. 2014, 136, 5424. (d) Sun, B.; Yoshino, T.; Matsunaga, S.; Kanai, M. Adv. Synth. Catal. 2014, 356, 1491. (e) Li, J.; Ackermann, L. Angew. Chem., Int. Ed. 2015, 54, 3635. (f) Yu, D.-G.; Gensch, T.; de Azambuja, F.; Vasquez-Cespedes, S.; Glorius, F. J. Am. Chem. Soc. 2014, 136, 17722.
14. (a) Grigorjeva, L.; Daugulis, O. Angew. Chem., Int. Ed. 2014, 53, 10209. (c) Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16, 4684. (b) Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16, 4688.
15. (a) Oonishi, Y.; Kitano, Y.; Sato, Y. Angew. Chem., Int. Ed. 2012, 51, 7305. (b) Marco-Martínez, J.; López-Carrillo, V.; Buñuel, E.; Simancas, R.; Cárdenas, D. J. J. Am. Chem. Soc. 2007, 129, 1874. (c) Wang, C. X.; Wang, D.; Yan, H.; Wang, H.; Pan, B.; Xin, X.; Li, X.; Wu, F.; Wan, B. Angew. Chem., Int. Ed. 2014, 53, 11940. (d) Jayanth, T. T.; Cheng, C.-H. Angew. Chem., Int. Ed. 2007, 46, 5921. (e) Yang, C.-M.; Jeganmohan, M.; Parthasarathy, K.; Cheng, C.-H. Org. Lett. 2010, 12, 3610.
16. (a) Chen, M.; Weng, Y.; Guo, M.; Zhang, H.; Lei, A. Angew. Chem. Int. Ed. 2008, 47, 2279. (b) Dai, L.-Z.; Qi, M.-J.; Shi, Y.-L.; Liu, X.-G.; Shi, M. Org. Lett. 2007, 9, 3191. (c) Morimoto, T.; Fuji, K.; Tsutsumi, K.; Kakiuchi, K. J. Am. Chem. Soc. 2002, 124, 3806. (d) Park, K. H.; Chung, Y. K. Adv. Synth. Catal. 2005, 347, 854. (e) Zhang, W.; Lou, S.; Liu, Y.; Xu, Z. J. Org. Chem. 2013, 78, 5932. (f) Park, C. P.; Nagle, A.; Yoon, C. H.; Chen, C.; Jung, K. W. J. Org. Chem. 2009, 74,6231.
17. Perrin, D.D.; Armarego, W. L. F, In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1998.
Chapter2
1. Smith, M. B.; March, J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed.; Wiley-Interscience: New York, 2007.
2. For selected recent reviews on C–H bond functionalizations, see: (a) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242. (b) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624. (c) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem. Eur. J. 2010, 16, 2654. (d) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215. (e) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293. (f) Ackermann, L. Chem. Rev. 2011, 111, 1315. (g) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780. (h) Baudoin, O. Chem. Soc. Rev. 2011, 40, 4902. (i) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem., Int. Ed. 2011, 50, 11062. (j) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. (k) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936. (l) Gaillard, S.; Cazin, C. S. J.; Nolan, S. P. Acc. Chem. Res. 2012, 45, 778. (m) Yang, L.; Huang, H. Catal. Sci. Technol. 2012, 2, 1099. (n) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879. (o) Collins, K. D.; Glorius , F. Nat. Chem. 2013, 7, 597. (p) Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52, 11726. (q) Mousseau, J. J.; Charrette, A. B. Acc. Chem. Res. 2013, 46, 412. (r) Shang, X.; Liu, Z.-Q. Chem. Soc. Rev. 2013, 42, 3253.
3. (a) Trost, B. M. Science 1991, 254, 1471. (b) Trost, B. M. Angew. Chem. Int. Ed. 1995, 34, 259. (c) Trost, B. M. Acc. Chem. Res. 2002, 35, 695.
4. (a) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788. (b) Huang, Z.; Lim, H.N.; Mo, F.; Young, M.C. Chem. Soc. Rev. 2015, 44, 7764. (c) De Sarkar, S.; Liu, W.; Kozhushkov, S. I.; Ackermann, L. Adv. Synth. Catal. 2014, 356, 1461.
5. (a) Bosnich, B. Acc. Chem. Res. 1998, 31, 667. (b) Jun, C.-H.; Jo, E.-A.; Park, J.-W. Eur. J. Org. Chem. 2007, 1869. (d) Willis, M. C. Chem. Rev. 2010, 110, 725. (c) Leung, J. C.; Krische, M. J. Chem. Sci. 2012, 3, 2202. (d) Leung, J. C.; Krische, M. J. Chem. Sci. 2012, 3, 2202. (d) Trost, B. M.; Krische, M. J. Synlett 1998, 1. (e) Murphy, S. K.; Dong, V. M. Chem. Commun. 2014, 50, 13645.
6. (a) Terao, Y.; Kametani, Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M. Tetrahedron 2001, 57, 5967. (b) Gurbuz, N.; Ozdemir, I.; Cetinkaya, B. Tetrahedron Lett. 2005, 46, 2273.
7. Padala, K.; Jeganmohan, M. Org. Lett. 2012, 14, 1134.
8. Yang, F.; Rauch,K.; Kettelhoit, K.; Ackermann, L. Angew. Chem., Int. Ed. 2014, 53, 11285.
9. (a) Gao, K.; Yoshikai, N. Acc. Chem. Res. 2014, 47, 1208. (b) Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464. (c) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem., Int. Ed. 2011, 50, 11062. (d) Muto, K.; Yamaguchi, J.; Lei, A.; Itami, K. J. Am. Chem. Soc. 2013, 135, 16384. (e) Shiota, H.; Ano, Y.; Aihara, Y.; Fukumoto, Y.; Chatani, N. J. Am. Chem. Soc. 2011, 133, 14952. (f) Aihara, Y.; Chatani, N.; J. Am. Chem. Soc. 2013, 135, 5308. (g) Norinder, J.; Matsumoto, A.; Yoshikai, N.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 5858
10. (a) Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. Angew. Chem., Int. Ed. 2013, 52, 2207. (c) Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. Chem. Eur. J. 2013, 19, 9142. (d) Ikemoto, H.; Yoshino, T.; Sakata, K.; Matsunaga, S.; Kanai, M. J. Am. Chem. Soc. 2014, 136, 5424. (e) Sun, B.; Yoshino, T.; Matsunaga, S.; Kanai, M. Adv. Synth. Catal. 2014, 356, 1491. (f) Grigorjeva, L.; Daugulis, O. Angew. Chem., Int. Ed. 2014, 53, 10209. (g) Yu, D.-G.; Gensch, T.; de Azambuja, F.; Vasquez-Cespedes, S.; Glorius, F. J. Am. Chem. Soc. 2014, 136, 17722. (h) Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16, 4684. (i) Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16, 4688. (j) Grigorjeva, L.; Daugulis, O. Org. Lett. 2015, 17, 1204. (k) Zhang, L. B.; Hao, X. Q.; Zhang, S. K.; Liu, Z. J.; Zheng, X. X.; Gong, J. F.; Niu, J. L.; Song, M. P. Angew. Chem., Int. Ed. 2015, 54, 272. (l) Zhang, L.-B.; Hao, X.-Q.; Liu, Z.-J.; Zheng, X.-X.; Zhang, S.-K.; Niu, J.-L.; Song, M.-P. Angew. Chem., Int. Ed. 2015, 54, 10012. (m) Li, J.; Ackermann, L. Angew. Chem., Int. Ed. 2015, 54, 3635. (n) Hummel, J. R.; Ellman, J. A. J. Am. Chem. Soc. 2015, 137, 490.
11. Lee, P.-S.; Yoshikai, N. Angew. Chem., Int. Ed. 2013, 52, 1240.
12. (a) Gao, K.; Lee, P.-S.; Long, C.; Yoshikai, N. Org. Lett. 2012, 14, 4234. (b) Gao, K.; Yoshikai, N. J. Am. Chem. Soc. 2013, 135, 9279.
13. Sun, B.; Yoshino, T.; Kanai, M.; Matsunaga, S. Angew. Chem. Int. Ed. 2015, 54, 12968.
14. (a) Oonishi, Y.; Kitano, Y.; Sato, Y. Angew. Chem., Int. Ed. 2012, 51, 7305. (b) Marco-Martínez, J.; López-Carrillo, V.; Buñuel, E.; Simancas, R.; Cárdenas, D. J. J. Am. Chem. Soc. 2007, 129, 1874. (c) Wang, C. X.; Wang, D.; Yan, H.; Wang, H.; Pan, B.; Xin, X.; Li, X.; Wu, F.; Wan, B. Angew. Chem., Int. Ed. 2014, 53, 11940. (d) Jayanth, T. T.; Cheng, C.-H. Angew. Chem., Int. Ed. 2007, 46, 5921. (e) Yang, C.-M.; Jeganmohan, M.; Parthasarathy, K.; Cheng, C.-H. Org. Lett. 2010, 12, 3610. (f) Santhoshkumar, R.; Mannathan, S.; Cheng, C.-H. Org. Lett. 2014, 16, 4208.
15. Perrin, D.D.; Armarego, W. L. F, In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1998.
16. (a) Chen, M.; Weng, Y.; Guo, M.; Zhang, H.; Lei, A. Angew. Chem. Int. Ed. 2008, 47, 2279. (b) Dai, L.-Z.; Qi, M.-J.; Shi, Y.-L.; Liu, X.-G.; Shi, M. Org. Lett. 2007, 9, 3191. (c) Morimoto, T.; Fuji, K.; Tsutsumi, K.; Kakiuchi, K. J. Am. Chem. Soc. 2002, 124, 3806. (d) Park, K. H.; Chung, Y. K. Adv. Synth. Catal. 2005, 347, 854. (e) Hung, C.-H.; Gandeepan, P.; Cheng, C.-H. ChemCatChem. 2014, 6, 2692−2697.
Chapter 3
1. For reviews on hydroacylation, see: (a) Bosnich, B. Acc. Chem. Res. 1998, 31, 667. (b) Jun, C.-H.; Jo, E.-A.; Park, J.-W. Eur. J. Org. Chem. 2007, 1869. (d) Willis, M. C. Chem. Rev. 2010, 110, 725. (c) Leung, J. C.; Krische, M. J. Chem. Sci. 2012, 3, 2202. (d) Leung, J. C.; Krische, M. J. Chem. Sci. 2012, 3, 2202. (d) Trost, B. M.; Krische, M. J. Synlett 1998, 1. (e) Murphy, S. K.; Dong, V. M. Chem. Commun. 2014, 50, 13645.
2. (a) Surburg, H.; Panten, J. Common Fragrance and Flavor Materials, 5th ed.; Wiley-VCH: Weinheim, Germany, 2006. (b) Deng, Y.; Chin, Y.-W.; Chai, H.; Keller, W. J.; Kinghorn, A. D. J. Nat. Prod. 2007, 70, 2049. (c) Romins, K. R.; Freeman, G. A.; Schaller, L. T.; Cowan, J. R.; Gonzales, S. S.; Tidwell, J. H.; Andrews, C. W.; Stammers, D. K.; Hazen, R. J.; Ferris, R. G.; Short, S. A.; Chan, J. H.; Boone, L. R. J. Med. Chem. 2006, 49, 727. (d) Masson, P. J.; Coup, D.; Millet, J.; Brown, N. L. J. Biol. Chem. 1994, 270, 2662.
3. (a) Shibata, T.; Toshida, N.; Takagi, K. J. Org. Chem. 2002, 67, 7446. (b) Kwong, F. Y.; Lee, H. W.; Lam, W. H.; Qiu, L.; Chan, A. S. C. Tetrahedron: Asymmetry 2006, 17, 1238. (c) Turlington, M.; Du, Y.; Ostrum, S. G.; Santosh, V.; Wren, K.; Lin, T.; Sabat, M.; Pu, L. J. Am. Chem. Soc. 2011, 133, 11780
4. (a) Suggs, J. W. J. Am. Chem. Soc. 1979, 101, 489. (b) Jun, C.-H.; Kang, J.-B.; Kim, J.-Y. J. Organomet. Chem. 1993, 458, 193. (c) Jun, C.-H.; Han, J.-S.; Kang, J.-B.; Kim, J.-Y. Tetrahedron Lett. 1993, 34, 6431. (d) Jun, C.-H.; Han, J.-S.; Kang, J.-B.; Kim, S.-I. J. Organomet. Chem. 1994, 474, 183. (e) Willis, M. C.; Sapmaz, S. Chem. Commun. 2001, 2558.
5. (a) Kokubo, K.; Matsumasa, K.; Miura, M.; Nomura, M. J. Org. Chem. 1997, 62, 4564. (b) Tanaka, M.; Imai, M.; Yamamoto, Y.; Tanaka, K.; Shimowatari, M.; Nagumo, S. J.; Kawahara, N.; Suemune, H. Org. Lett. 2003, 5, 1365. (c) Imai, M.; Tanaka, M.; Tanaka, K.; Yamamoto, Y.; Imai-Ogata, N.; Shimowatari, M.; Nagumo, S.; Kawahara, N.; Suemune, H. J. Org. Chem. 2004, 69, 1144. (d) Stemmler, R. T.; Bolm, C. Adv. Synth. Catal. 2007, 349, 1185. (e) Coulter, M. M.; Kou, K. G. M.; Galligan, B.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 16330. (f) Murphy, S. K.; Coulter, M. M.; Dong, V. M. Chem. Sci. 2012, 3, 355. (g) Murphy, S. K.; Petrone, D. A.; Coulter, M. M.; Dong, V. M. Org. Lett. 2011, 13, 6216.
6. Castaing, M.; Wason, S. L.; Estepa, B.; Hooper, J. F.; Willis, M. C. Angew. Chem., Int. Ed. 2013, 52, 13280.
7. (a) Willis, M. C.; McNally, S. J.; Beswick, P. J. Angew. Chem., Int. Ed. 2004, 43, 340. (b) Willis, M. C.; McNally, S. J.; Beswick, P. J. Angew. Chem. Int. Ed. 2004, 43, 340. (c) Moxham, G. L.; Randell-Sly, H. E.; Brayshaw, S. K.; Woodward, R. L.; Weller, A. S.; Willis, M. C. Angew. Chem., Int. Ed. 2006, 45, 7618. (d) Moxham, G. L.; Randell-Sly, H. E.; Brayshaw, S. K.; Weller, A. S.; Willis, M. C. Chem. — Eur. J. 2008, 14, 8383. (e) Osborne J. D.; Willis, M. C. Chem. Commun. 2008, 5025. (f) Chaplin, A. B.; Hooper, J. F.; Weller, A. S.; Willis, M. C. J. Am. Chem. Soc. 2012, 134, 4885.
8. Shen, Z.; Khan, H. A.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 2916.
9. Murphy, S. K.; Bruch, A.; Dong, V. M. Angew. Chem., Int. Ed. 2014, 53, 2455.
10. (a) Hatanaka, S.; Obora, Y.; Ishii, Y. Chem. Eur. J. 2010, 16, 1883. (b) Hoshimoto, Y.; Hayashi, Y.; Suzuki, H.; Ohashi, M.; Ogoshi, S. Angew. Chem., Int. Ed. 2012, 51, 10812. (c) Chen, Q.-A.; Cruz, F. A.; Dong, V. M. J. Am. Chem. Soc. 2015, 137, 3157. (d) Tsuda, T.; Kiyoi, T.; Saegusa, T. J. Org. Chem. 1990, 55, 2554. (e) Kondo, T.; Hiraishi, N.; Morisaki, Y.; Wada, K.; Watanabe, Y.; Mitsudo, T. Organometallics 1998, 17, 2131. (f) Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43, 6205. (g) Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14120. (h) Tekavec, T. N.; Louie, J. J. Org. Chem. 2008, 73, 2641. (i) Liu, Q.; Perreault, S.; Rovis, T. J. Am. Chem. Soc. 2008, 130, 14066. (j) Williams, V. M.; Leung, J. C.; Patman, R. L.; Krische, M. J. Tetrahedron 2009, 65, 5024. (k) Taniguchi, H.; Ohmura, T.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 11298. (l) Hoshimoto, Y.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2011, 133, 4668. (m) (l) Miura, H.; Wada, K.; Hosokawa, S.; Inoue, M. Chem. Eur. J. 2013, 19, 861.
11. (a) Lenges, C. P.; Brookhart, M. J. Am. Chem. Soc. 1997, 119, 3165.(b) Lenges, C. P.; White, P. S.; Brookhart, M. J. Am. Chem. Soc. 1998, 120, 6965.
12. Chen, Q.-A.; Kim, D. K.; Dong, V. M. J. Am. Chem. Soc. 2014, 136, 3772.
13. (a)Yang, J.; Yoshikai, N. J. Am. Chem. Soc. 2014, 136, 16748. (b) Yang, J.; Seto, Y. M.; Yoshikai, N. ACS Catal. 2015, 5, 3054.
14. (a) Oonishi, Y.; Kitano, Y.; Sato, Y. Angew. Chem., Int. Ed. 2012, 51, 7305. (b) Marco-Martínez, J.; López-Carrillo, V.; Buñuel, E.; Simancas, R.; Cárdenas, D. J. J. Am. Chem. Soc. 2007, 129, 1874. (c) Wang, C. X.; Wang, D.; Yan, H.; Wang, H.; Pan, B.; Xin, X.; Li, X.; Wu, F.; Wan, B. Angew. Chem., Int. Ed. 2014, 53, 11940. (d) Jayanth, T. T.; Cheng, C.-H. Angew. Chem., Int. Ed. 2007, 46, 5921. (e) Yang, C.-M.; Jeganmohan, M.; Parthasarathy, K.; Cheng, C.-H. Org. Lett. 2010, 12, 3610. (f) Santhoshkumar, R.; Mannathan, S.; Cheng, C.-H. Org. Lett. 2014, 16, 4208.
15. Perrin, D. D.; Armarego, W. L. F. In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988.
16. (a) Chen, M.; Weng, Y.; Guo, M.; Zhang, H.; Lei, A. Angew. Chem. Int. Ed. 2008, 47, 2279. (b) Dai, L.-Z.; Qi, M.-J.; Shi, Y.-L.; Liu, X.-G.; Shi, M. Org. Lett. 2007, 9, 3191. (c) Morimoto, T.; Fuji, K.; Tsutsumi, K.; Kakiuchi, K. J. Am. Chem. Soc. 2002, 124, 3806. (d) Park, K. H.; Chung, Y. K. Adv. Synth. Catal. 2005, 347, 854. (e) Yang, J.; Yoshikai, N. J. Am. Chem. Soc. 2014, 136, 16748.