研究生: |
鍾育賢 |
---|---|
論文名稱: |
與電解質溶液離子流傳輸有關的模型之回顧 A survey on recent results of models of ion transport in electrolyte solutions |
指導教授: |
李俊璋
Chiun-Chang Lee |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
南大校區系所調整院務中心 - 應用數學系所 應用數學系所(English) |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 24 |
中文關鍵詞: | 變分學 、泛涵 、歐拉-拉格朗日方程 、電解質溶液 、泊松-玻尔兹曼方程 |
外文關鍵詞: | Calculus of variations, Functional, Euler-Lagrange equation, Electrolyte solutions, Poisson-Boltzmann equation |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從微積分的發展,到伯努利兄弟的出現,更因為他們兄弟彼此在數學學數上的一些紛爭與較量,以及弟弟約翰在當時提出了一個問題想挑戰當代的大師牛頓之後,進而使得數學的發展上有了一些新的想法,也就是泛函的概念以及變分法的出現,而在變分法當中則以『Euler-Lagrange Equation』為主要核心,以此作為變分的基礎模型來解決與討論一些在物理上應用的問題。
New mathematical ideas have been evolved in calculus since the Bernoulli brothers. The brothers competed and argued in academic mathematics. The younger even raised questions to challenge Newton, who was the authority at that time. These events led to the orientation of functional idea and calculus of variations. And the Euler-Lagrange equation is the core of calculus of variations. Using it as the base model of variation, we raised a few more discussions and proposed some possible solutions for the application in Physics.
[1] C.C.Lee, Effects of the bulk volume fraction on solutions of modified Poisson–Boltzmann equations, Journal of Mathematical Analysis and Applications 437(2), (2016) 1101–1129.
[2] C.C.Lee, Asymptotic analysis of charge conserving Poisson–Boltzmann equations with variable dielectric coefficients, Discrete and Continuous Dynamical Systems - Series A 36(6), (2016) 3251–3276.
[3] C.C.Lee, with H. Lee, Y.K. Hyon, T.-C. Lin and C. Liu, Boundary layer solutions of Charge Conserving Poisson–Boltzmann equations: one-dimensional case, Communications in Mathematical Sciences 14(4), (2016) 911–940.
[4] C.C.Lee, The charge conserving Poisson–Boltzmann equations: Existence, uniqueness, and maximum principle, Journal of Mathematical Physics 55, (2014) 051503.
[5] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer, Berlin, 2001.
[6] M. Z. Bazant, K. T. Chu and B. J. Bayly, Current-Voltage relations for electrochemical thin films, SIAM J. Appl. Math., 65 (2005), 1463-1484.
[7] A. Glitzky and R. Hunlich, Energeric estimates and asymptotics for electro-reaction-diffustion systems, Z. Angew. Math. Math,. 77 (1997), 823-832.
[8] D. Lacoste, G. I. Menon, M. Z. Bazant and J. F. Joanny, Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane, Eur. Phys. J. E, 28 (2009), 243-264.
[9] R. Ryham, C. Liu and Z. Q. Wang, On electro-kinetic uids: One dimensional configurations, Discrete Contin Dyn. Syst. B, 6 (2006), 357-371.
[10] R. Ryham, C. Liu and L. Zikatanov, Mathematical models for the deformation of electrolyte droplets, Discrete Contin Dyn. Syst. B, 8 (2007), 649-661.
[11] D. T. Conroy, R. V. Craster, O. K. Matar and D. T. Papageorgiou, Dynamics and stability of an annular electrolyte film, J. Fluid Mech., 656 (2010), 481-506.
[12] M. A. Fontelos and L. B. Gamboa, On the structure of double layers in Poisson-Boltzmann equation, Discrete Contin Dyn. Syst. B, 17 (2012), 1939-1967.
[13] D. Bothe, A. Fischer and J. Saal, Global well-posedness and stability of electrokinetic flows, SIAM J. Math. Anal., 46 (2014), 1263-1316.
[14] Y. Hyon, A Mathematical Model For Electrical Activity in Cell Membrane: Energetic Variational Approach, work in progress.
[15] L. Wan, S. Xu, M. Liao, C. Liu and P. Sheng, Self-consistent approach to global charge neutrality in electrokinetics: A surface potential trap model, Phys. Rev. X, 4 (2014), 011042.
[16] F. Ziebert, M. Z. Bazant and D. Lacoste, Effective zero-thickness model for a conductive membrane driven by an electric field, Phys. Rev. E, 81 (2010), 031912.
[17] L. Lanzani and Z. Shen, On the Robin boundary condition for Laplace's equation in Lipschit domains, Commun. Partial Differ. Eq., 29 (2004), 91-109
[18] 數學物理趣談: 從微積分到變分法. 出版社: 科學出版社. 作者: 張天蓉. 出版日: 2015/04/01
[19] 人物圖片來源: 維基百科裡各個人物介紹.
[20]《數學恩仇錄: 數學史上的十大爭端》. 作者: 哈爾.赫爾曼(Hal Hellman). 譯者: 范偉. 出版日:2016/1/25
[21] 交通大學線上開放課程(2012): 變分學導論.授課教師:林琦焜教授.