簡易檢索 / 詳目顯示

研究生: 王芊驊
Wang, Cian-Hua
論文名稱: 基於離散哈特利轉換之MIMO濾波器組多載波系統的資料偵測技術
Data Detection for a DHT-Based MIMO Filter Bank Multicarrier System
指導教授: 王晉良
Wang, Chin-Liang
口試委員: 鐘嘉德
馮世邁
蔡育仁
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 47
中文關鍵詞: 離散哈特利轉換濾波器組多載波系統資料偵測多重輸入多重輸出
外文關鍵詞: DHT, FBMC, Data Detection, MIMO
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們在多重輸入多重輸出 (multiple input multiple output ; MIMO)情形下研究一種基於離散哈特利轉換 (discrete Hartley transform;DHT) 的替代性濾波器組多載波 (FBMC) 系統的數據偵測法,而不是眾所周知的基於離散傅立葉轉換 (discrete Fourier transform;DFT) 之FBMC系統。在基於DHT的MIMO FBMC系統中,訊號經過多路徑傳輸將受到天線間干擾 (IAI)、載波間干擾 (ICI) 以及符元間干擾 (ISI)。對於接收端的數據偵測,我們考慮一種實際的情況,因為傳送訊號和通道響應做線性折積運算且FBMC系統中沒有CP,所以在基於DHT的MIMO FBMC系統中產生非對角頻域通道矩陣。我們採用一種改善的二維排序演算法在每一對鏡像對稱的子載波上做聯合資料偵測,在此使用的是full-tap per-two-tone等化方式,而不是傳統的single-tap per-tone等化方式。為了提高資料偵測性能,部分平行干擾消除技術被進一步提出,用於修改的二維排序演算法。電腦模擬結果顯示我們所提出的DHT-MIMO FBMC系統可以達到比現有的DFT-based MIMO FBMC系統較好的位元錯誤率,然而前者所使用的聯合資料偵測需要比較高的運算量,以開發DHT系統中的多樣性增益。


    In this thesis, we investigate data detection algorithms for an alternative filter bank multicarrier (FBMC) system based on the discrete Hartley transform (DHT), instead of the well-known discrete Fourier transform (DFT), under a multiple-input multiple-output (MIMO) scenario. In DHT-based MIMO FBMC, signals transmitted through multipath channels will be affected by inter-antenna interference, inter-carrier interference, and inter-symbol interference. For data detection at the receiver, we consider a practical situation where the transmitted signals are linearly convolved with the channel impulse response and there is no CP in the FBMC system, resulting in a non-diagonal frequency-domain channel matrix in the DHT-based MIMO FBMC system. Then, we adopt a modified two-dimensional ordering algorithm with joint data detection on each mirror-symmetrical pair of subcarriers at the receiver, where full-tap per-two-tone equalization is used instead of the conventional single-tap per-tone equalization. To improve detection performance, partial parallel interference cancellation is further considered for the modified two-dimensional ordering algorithm. Computer simulation results show that the proposed DHT-based MIMO FBMC system achieves better bit-error-rate performance than the existing DFT-based MIMO FBMC system, but the former requires higher computational complexity for joint data detection at the receiver to exploit the diversity gain.

    Contents Abstract i Contents ii List of Figures iii List of Tables vii I. Introduction 1 II. System Model 5 A. General DHT-Based FBMC System Model 5 B. DHT-Based FBMC System with Two Prototype Filters 6 C. DHT-Based MIMO FBMC Systems with Two Prototype Filters 10 III. Proposed Methods 16 A. Full-Tap MMSE Equalizer 17 B. Full-Tap ML Detection 18 C. Modified Two-Dimensional Ordering Algorithm 19 D. A Partial Parallel Interference Cancellation for Modified Two-Dimensional Ordering Algorithm 27 E. Comparison and Reduction of Complexity 29 IV. Simulation Results 31 V. Conclusion 44 References 45

    [1] B. F. Boroujeny, “OFDM versus filter bank multicarrier,” IEEE Signal Process. Mag., vol. 28, no. 3, pp. 92–112, May. 2011.
    [2] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065–1082, Jun. 2014.
    [3] C. -X. Wang, F. Haider, X. Gao, X. -H. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag., vol. 52, no. 2, pp. 122–130, Feb. 2014.
    [4] F. Boccardi, R. W. Heath Jr., A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag., vol. 52, no. 2, pp. 74–80, Feb. 2014.
    [5] A. Bedoui and M. Et-tolba, “A comparative analysis of filter bank multicarrier (FBMC) as 5G multiplexing technique,” in Proc. IEEE International Conference on Wireless Networks and Mobile Communications (WINCOM’17), Rabat, MA, Nov. 2017, pp. 1–7.
    [6] P. P. Vaidyanathan, Multirate System and Filter Banks. Englewood Cliffs, NJ: Prentice-Hall, 1993.
    [7] B. D. Tensubam, N. L. Chanu, and S. Singh, “Comparative analysis of FBMC and OFDM multicarrier techniques for wireless communication networks,” International Journal of Computer Applications, vol. 100, no. 19, Aug. 2014.
    [8] L. G. Baltar, I. Slim, and J. A. Nossek, “Efficient filter bank multicarrier realizations for 5G,” in Proc. 2015 IEEE International Symposium on Circuits and Systems (ISCAS’15), Lisbon, PRT, May 2015, pp. 2608–2611.
    [9] A. Viholaninen, M. Bellanger, and M. Huchard, “PHYDYAS–Physical layer for dynamic access and cognitive radio,” Tech. Rep. D5.1, EU FP7-ICT Future Networks, Jan. 2009. Project website: http//www.ict-phydyas.org/.
    [10] H. Nam, M. Choi, S. Han, C. Kim, S. Choi, and D. Hong, “A new filter-bank multicarrier system with two prototype filters for QAM symbols transmission and reception,” IEEE Trans. Wireless Commun., vol. 15, no. 9, pp. 5998–6009, Sep. 2016.
    [11] A. Lozano and N. Jindal, “Transmit diversity vs. spatial multiplexing in modern MIMO systems,” IEEE Trans. on Wireless Commun., vol. 9, no. 1, pp. 186–197, Jan. 2010.
    [12] M. Renfors, T. Ihalainen, and T. H. Stitz, “A block-Alamouti scheme for filter bank based multicarrier transmission,” in Proc. IEEE Eur. Wireless Conf., Lucca, Italy, Apr. 2010, pp. 1031–1037.
    [13] R. Zakaria, D. Le Ruyet, and M. Bellanger, “Maximum likelihood detection in spatial multiplexing with FBMC,” in Proc. IEEE Eur. Wireless Conf., Lucca, Italy, Apr. 2010, pp. 1038–1041.
    [14] Y. H. Yun, C. Kim, K. Kim, Z. Ho, B. Lee, and J.-Y. Seol, “A new waveform enabling enhanced QAM-FBMC systems,” in Proc. IEEE Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC’15), Stockholm, Sweden, Jun. 2015, pp. 116–120.
    [15] H. -S. Pan, “A filter bank multicarrier system based on the discrete Hartley transform and two prototype filters,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Dec. 2017.
    [16] D. Sim and C. Lee, “A MIMO receiver with two-dimensional ordering for maximum likelihood detection in FBMC-QAM,” IEEE Trans. Commun. Lett., vol. 21, no. 7, pp. 1465–1468, Jul. 2017.
    [17] Z. Ho, K. Kim, C. Kim, Y. H. Yun, Y. H. Cho, and J. Y. Seol, “A QAM-FBMC space-time block code system with linear equalizers,” in Proc. IEEE Globecom Workshops (GC Wkshps’15), San Diego, USA, Dec. 2015, pp. 1–5
    [18] C. -L. Wang, J. -L. Chen and S. -S. Wang, “A partial PIC based receiver design for SFBC-OFDM cooperative relay systems,” in Proc. IEEE 81st Vehicular Technology Conference (VTC Spring’15), Glasgow, UK, May 2015, pp. 1–5.
    [19] C. -T. Tuan, “A discrete Hartley transform based filter bank multicarrier transmission system,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Aug. 2016.
    [20] P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1170–1183, May 2002.
    [21] K. -C. Yang, “Time synchronization and CFO estimation for a DHT-based filter bank multicarrier system,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Aug. 2018.
    [22] J. Mao, C. -L. Wang, L. Zhang, C. He, P. Xiao, and K. Nikitopoulos, “A DHT-based multicarrier modulation system with pairwise ML detection,” in Proc. IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC’17), Montreal, CA, Oct. 2017, pp. 1–6.
    [23] X. Dai, S. Sun, and Y. Wang, “Reduced-complexity performance-lossless (quasi-)maximum-likelihood detectors for S-QAM modulated MIMO systems,” Elect. Lett., vol. 49, no. 11, pp. 724–725, May 2013.
    [24] W. You, L. Yi, and W. Hu, “Reduced complexity maximum-likelihood detection for MIMO-OFDM systems,” in Proc. IEEE Wireless Communications, Networking and Mobile Computing (WiCom’12), Shanghai, CN, Sep. 2012, pp. 1–3.

    QR CODE