簡易檢索 / 詳目顯示

研究生: 王亭諭
Wang, Ting Yu
論文名稱: 欠致動單足機器人之跳躍策略研究
Control Strategy Analysis of One-Legged Under-actuated Hopping Robot
指導教授: 葉廷仁
Yeh, Ting-Jen
口試委員: 陳榮順
顏炳郎
葉廷仁
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 60
中文關鍵詞: 單足機器人跳躍欠致動
外文關鍵詞: one-legged robot, hopping, under-actuated
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目標為使一具有雙致動器及平坦狀腳底板的單足機器人完成穩定跳躍,並建立一套完整的控制策略。為了仿照人類跳躍的動作,機器人在起跳前會經歷特殊的欠致動狀態,亦即其腳底會繞著未致動的腳趾旋轉,此狀態可使跳躍的距離更遠也使動作更加自然與流暢。論文中首先建立一個三連桿單足機器人之運動模型以利分析動態,藉著參考文獻的控制法並進一步套用於此模型。並透過質量與長度的機構參數設計,使複雜的零點動態簡化成單擺動態進而起跳。而後從空中,利用運動學分析決定控制目標以及著地閉迴路控制完成一跳躍週期之控制策略。最後模擬驗證機器人可以以論文中提出的跳躍策略達成欠致動跳躍,並且可以透過調整其中參數來改變其控制性能。


    In this paper, the purpose is to establish a control strategy for an under-actuated one-legged hopping robot constructed from three links with two actuators and flat-shaped foot. To act like a human, the robot will go through an under-actuated phase in which the foot rotates around the under-actuated toe on the ground before taking off. By this special feature, it can perform human-like hops with longer hopping distance than a fully actuated robot. First we derive the robot system’s dynamics, and implement the control method from reference. By choosing particular mass and length parameters, zero dynamics turn into a simple pendulum motion, which causes the robot to hop. Next, kinematics are analyzed to design the control target during flight phase. Finally, close-loop control is used to simulate the center of mass act as a spring damper system to stabilize the robot in the landing phase and complete the hop cycle. In conclusion, the simulation results demonstrate that it can achieve under-actuated hopping by the control strategy, and performance can be changed by modifying the control parameters.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 4 1.3 論文簡介 7 第二章 單足機器人運動模型與控制策略 8 2.1 完整跳躍週期之跳躍階段介紹 9 2.2 單足機器人完整動態分析 10 2.3 零點動態 理論與應用 12 2.3.1 簡介 12 2.3.2 Acrobot之原理 12 2.3.3 Swing Phase Zero Dynamics 原理簡介 14 2.3.4 套用於三連桿系統之零點動態 16 2.3.5 形成簡單動態之限制條件 17 2.3.6 零點動態之物理意義 19 第三章 跳躍週期內各階段控制策略 21 3.1 Full Actuated Phase 21 3.2 Under-actuated Phase 23 3.3 Flight Phase 24 3.4 Landing Phase 26 第四章 模擬驗證 29 4.1 Full Actuated Phase simulation 31 4.2 Under-actuated Phase simulation 33 4.3 Flight Phase simulation 38 4.4 Landing Phase simulation 40 4.5 進一步探討正常跳躍的空中及著地階段 45 4.6 控制參數對於跳躍性能之影響 47 第五章 結論 48 參考文獻 50 附錄一 53  

    [1] 許秉弘,「單足機器人穩定跳躍之軌跡規劃」,國立清華大學動力機械工程學系碩士論文,2009
    [2] 林李翰 ,「單足機器人穩定跳躍之欠致動控制研究」,國立清華大學動力機械工程學系碩士論文,2011
    [3] S. Kajita , F. Kanehiro , K. Kaneko , K. Fujiwara , K. Harada, K.Yokoi, and H. Hirukawa , “Resolved Momentum Control: Humanoid Motion Planning based on the Linear and Angular Momentum,” Proc. of the 2003 IROS, pp.1644–1650, 2003.
    [4] M. D. Berkemeier , and R. S. Fearing, “Tracking fast inverted trajectories of the underactuated acrobot. ” Robotics and Automation, IEEE Transactions , 15(4):740–750, Aug 1999.
    [5] M. Raibert, H. Brown and M. Chepponis, “Experiments in Balance with a 3D One-Legged Hopping Machine,” Int. J. Robot. Res. , 3(2), 75–92, 1984.
    [6] M. Raibert, “Legged Robots that Balance,” Cambridge, MA: MIT Press, 1986.
    [7] P. Gregorio, M. Ahmadi and M. Buehler, “Design, Control, and Energetics of an Electrically Actuated Legged Robot,” IEEE Trans. Syst., Man, Cybern., 27 (4): 626–634, 1997.
    [8] M. Ahmadi and M. Buehler, “Controlled Passive Dynamic Running Experiments with the ARL-Monopod 2,” IEEE Trans. Robot., 22 (5): 974–986, 2006.
    [9] W. J. Schwind and D. E. Koditschek, “Control of forward velocity for a simplified planar hopping robot,” Proc. 1995 IEEE Int.Conference on Robotics & Automation, Nagoya, Aichi, Japan, pp.691-696, 1995.
    [10] D. Goswami, P. Vadakkepat: “Planar Bipedal Jumping Gaits With Stable Landing.” IEEE Transactions on Robotics 25(5): 1030-1046 (2009)
    [11] I. Poulakakis and J. W. Grizzle, “The spring loaded inverted pendulum as the hybrid zero dynamics of an asymmetric hopper,” IEEE Trans. Autom. Control 54, 1779 (2009).
    [12] S. H. Tamaddoni, F. Jafari, A. Meghdari, S. Sohrabpour, “Biped Hopping Control Based on Spring Loaded Inverted Pendulum Model”, Int. Journal of Humanoid Robotics, Vol. 7, No. 2, pp. 263-280, 2010.
    [13] M. Vukobratovié and B. Borovac, “Zero-Moment Point – Thirty Five Years of Its Life,” Int. J. Human. Robot., 1(1): 157–173, 2004.
    [14] B. Ugurlu and A. Kawamura, “Real-time jumping trajectory generation for a one legged jumping robot,” 34th Annual Conference of IEEE on Industrial Electronics, pp.1668–1673, 2008.
    [15] R. Tajima and K. Suga, “Motion having a Flight Phase: Experiments Involving a One-legged Robot,” IEEE International Conference on Intelligent Robots and Systems, pp.1726–1731, 2006.
    [16] S. Kajita, T. Nagasaki, K. Kaneko, K. Yokoi, and K. Tanie, “A Hop towards Running Humanoid Biped,” Proc. of the IEEE International Conference on Robotics and Automation, pp.629–635, 2004.
    [17] S. Kajita, K. Kaneko, M. Morisawa, S. Nakaoka, and H. Hirukawa, “ZMP-based Biped Running Enhanced by Toe Springs,” Proc. of the IEEE International Conference on Robotics and Automation, pp.3963–3969, 2007.
    [18] S. Kajita, T. Nagasaki, K. Kaneko, and H. Hirukawa, “ZMP-Based Biped Running Control – The HRP-2LR Humanoid Biped Robot,” IEEE Rob. Automat. Mag., 14(2): 63–72, 2007.
    [19] E. Westervelt, J. Grizzle, C. Chevallereau, J. Choi, and B. Morris,
    “Feedback Control of Dynamic Bipedal Robot Locomotion, ”(Control and Automation). CRC, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE