研究生: |
鍾佳靜 Jia-Jing Zhong |
---|---|
論文名稱: |
摻鋁氧化鋅薄膜披覆氧化鋅奈米柱殼層結構物性研究 Study of physical properties in AZO/ZnO-nanorods core-shell structures |
指導教授: |
林志明
Chih Ming Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 氧化鋅奈米柱 、水熱法 、原子層氣相沉積系統 、殼層結構 |
外文關鍵詞: | ZnO-nanorods, hydrothermal method, Atomic Layer Deposition, core-shell structures |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
使用原子層沉積系統(Atomic Layer Deposition, ALD)沉積氧化鋅(Zinc Oxide, ZnO)薄膜作為氧化鋅(ZnO)奈米柱成長之晶種層。藉由水熱溶液合成法成長氧化鋅(ZnO)奈米柱於晶種層上,以硝酸鋅(Zinc nitrate, Zn(NO3)2)與六甲基四胺(Hexamethylenetetramine, HMTA)為前驅物,不同莫爾濃度、不同反應時間所成長氧化鋅奈米柱。前驅物莫爾濃度為0.1M,反應時間為30min所成長氧化鋅奈米柱深寬比約為10,形貌較佳。
將前驅物莫爾濃度為0.1M,反應時間為30min所成長氧化鋅奈米柱,使用原子層沉積系統(Atomic Layer Deposition, ALD)沉積不同摻鋁比例之摻鋁氧化鋅(Aluminum doped Zinc Oxide, AZO)薄膜在氧化鋅奈米柱上,其成長溫度為280℃,成長週期為36週期(約11.5nm)。披覆不同摻雜鋁比例之摻鋁氧化鋅薄膜的氧化鋅奈米柱與未披覆之氧化鋅奈米柱皆以(002)晶面方向成長,從XRD得知,且由PL得知並無氧缺陷的現象。霍爾測量得知不同摻雜鋁比例之摻鋁氧化鋅薄膜載子濃度會隨著摻雜比例減少而下降,且場發射特性結果也隨著摻雜比例下降,其起始電壓隨著增加,以披覆摻雜鋁比例為1:6之摻鋁氧化鋅薄膜的氧化鋅奈米柱場發效果較佳,起始電壓為13.7 V/μm,最大電流密度為6.53μA/cm2,場發射增強因子β為676。
In this study, we use atomic layer deposition system (Atomic Layer Deposition, ALD) deposition of zinc oxide (Zinc Oxide, ZnO) thin film as seed layer, and then we growth zinc oxide (ZnO) nanorods by hydrothermal method. The precursor of hydrothermal method is prepared with zinc nitrate (Zn (NO3) 2) and hexamethylenetetramine (HMTA). We study morphology of ZnO nanorods which growth in different molar concentration and reaction times. The aspect ratio of ZnO nanorods is the best when precursor molar concentration is 0.1M, and the reaction time is 30min. And then we use ALD system cover AZO (Aluminum doped Zinc Oxide) film on ZnO nanorod. The growth temperature of AZO thin film is 280℃, and the growth cycle is 36 cycle (approximately 11.5nm). We observe ZnO nanorod and ZnO nanorod with AZO crystal orientation are (002) by XRD. There are no anaerobic defect that we observed by PL. Hall measurement shows that carrier concentration of AZO with different Aluminum percent may be reduced, and the results of field emission characteristics along with the doping percent decreased, the turn on voltage increases to drape doped aluminum ratio 1: 6 of the AZO thin film with ZnO nanorods has the best parameter, turn on voltage is 13.7 V / μm, the maximum current density is 6.53μA / cm2, and field emission enhancement factor β is 676.
[1] Q. Li, V. Kumar, Y. Li, H. Zhang, T.J. Marks, R.P.H. Chang, Chemistry of Materials 17 (2005) 1001.
[2] Z.L. Wang, Materials Science and Engineering: R: Reports 64 (2009) 33.
[3] J.A. Anta, E. Guillén, R. Tena-Zaera, The Journal of Physical Chemistry C 116 (2012) 11413.
[4] S. Park, S. An, H. Ko, C. Jin, C. Lee, ACS Applied Materials & Interfaces 4 (2012) 3650.
[5] Y.-M. Chang, J.-M. Huang, C.-M. Lin, H.-Y. Lee, S.-Y. Chen, J.-Y. Juang, The Journal of Physical Chemistry C 116 (2012) 8332.
[6] J. She, Z. Xiao, Y. Yang, S. Deng, J. Chen, G. Yang, N. Xu, ACS Nano 2 (2008) 2015.
[7] Y.-M. Chang, M.-C. Liu, P.-H. Kao, C.-M. Lin, H.-Y. Lee, J.-Y. Juang, ACS Applied Materials & Interfaces 4 (2012) 1411.
[8] G. He, K. Wang, Applied Surface Science 257 (2011) 6590.
[9] I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, C. Lévy-Clément, Applied Physics Letters 89 (2006) 203117.
[10] L. Vayssieres, Advanced Materials 15 (2003) 464.
[11] S. Cho, S.-H. Jung, K.-H. Lee, The Journal of Physical Chemistry C 112 (2008) 12769.
[12] J. Huang, C. Xia, L. Cao, X. Zeng, Materials Science and Engineering: B 150 (2008) 187.
[13] N. Tabet, R. Al Ghashani, S. Achour, Superlattices and Microstructures 45 (2009) 598.
[14] A.M. Peiró, C. Domingo, J. Peral, X. Domènech, E. Vigil, M.A. Hernández-Fenollosa, M. Mollar, B. Marí, J.A. Ayllón, Thin Solid Films 483 (2005) 79.
[15] A.M. Peiró, J.A. Ayllón, J. Peral, X. Domènech, C. Domingo, Journal of Crystal Growth 285 (2005) 6.
[16] V.K. Ivanov, A.S. Shaporev, F.Y. Sharikov, A.Y. Baranchikov, Superlattices and Microstructures 42 (2007) 421.
[17] T. Thongtem, S. Jattukul, A. Phuruangrat, S. Thongtem, Journal of Alloys and Compounds 491 (2010) 654.
[18] J. Zhang, Sun, Yin, Su, Liao, Yan, Chemistry of Materials 14 (2002) 4172.
[19] Y.-M. Chang, M.-L. Lin, T.-Y. Lai, H.-Y. Lee, C.-M. Lin, Y.-C.S. Wu, J.-Y. Juang, ACS Applied Materials & Interfaces 4 (2012) 6676.
[20] T. Premkumar, Y.S. Zhou, Y.F. Lu, K. Baskar, ACS Applied Materials & Interfaces 2 (2010) 2863.
[21] J.-M. Huang, S.-Y. Tsai, C.-S. Ku, C.-M. Lin, S.-Y. Chen, H.-Y. Lee, Physical Chemistry Chemical Physics 18 (2016) 15251.
[22] T. Suntola, J. Antson, U.S. Patent No.4058430, DOI(1977).
[23] 黃政銘著/林志明, 李信義指導,“Optical and Structure Properties of ZnO Epitaxial Films Growth at Low Temperature by Atomic Layer Deposition”新竹教育大學論文,DOI.
[24] 蔡尚祐著/陳三元, 李信義指導,“Structural and Photoelectric properties of ZnO nanowires coated with Al doped ZnO films prepared by in-situ atomic layer deposition”交通大學論文,DOI.