研究生: |
楊哲銘 Yang, Che-Ming |
---|---|
論文名稱: |
開發氧化鎂為基底之固體鹼觸媒作為甲醇誘導化學反應之應用 Development of MgO-based Nanocomposites Catalysts for Applications of Methanol-induced Chemical Reactions |
指導教授: |
蔡德豪
Tsai, De-Hao |
口試委員: |
呂世源
Lu, Shih-Yuan 李岱洲 Lee, Tai-Chou 潘詠庭 Pan, Yung-Tin |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 固體鹼觸媒 、氧化鎂 、金屬-有機框架材料 、奈米複合材料 、鹼度 |
外文關鍵詞: | Solid base catalyst, Magnesium oxide, Metal-organic framework, Nanocomposite, Basicity |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究之工作目的為開發以氧化鎂作為活性中心之固體鹼觸媒製備技術與建立適用之材料分析平台和完整的反應測試系統,作為評估非勻相催化反應之活性表現。在第一部份中,我們以共沉澱法製備鎂鋁氧複合式觸媒作為環氧丙烷之開環醚化反應之應用,並針對固體鹼觸媒建立一套材料鑑定方法與反應器之架設。在第二部分中,我們以Zn-MOF (ZIF-8)作為前驅體材料、氧化鎂作為活性成分,運用初濕含浸法合成出不同化學組成與外觀形貌之MOF衍生混成式奈米結構,並結合第一部份所建立之材料鑑定平台與反應測試系統,應用於催化轉酯化與脫酸環化等反應上。
在材料鑑定方法上,我們使用X光繞射儀(XRD)、掃描電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、比表面積與孔徑分析儀(BET)、化學吸附儀(TPD)、指示劑法(Hammett indicator)和感應耦合電漿發射光譜儀(ICP-OES)等分別對固體鹼觸媒進行晶相分析,外觀型態之觀察,表面鹼度分布、比表面積與孔徑大小之測量和觸媒中元素之分析,而其中又以鹼度分析對於鹼性催化之影響至關重要,由第一部份之研究成果顯示,我們可以透過調整前驅物中鎂鋁莫耳比之大小,來改變觸媒表面之酸鹼特性,此外,當鎂鋁莫耳比接近4-5之間時,觸媒具有最佳之活性及對應含量最多之中鹼基位。在第二部分之研究成果中,我們成功以初濕含浸法合成出兩種不同型態之MOF衍生Mg-Zn混成式奈米結構—(1)氧化鎂奈米粒子包覆於Zn-MOF奈米晶體團簇之孔洞結構中(MgO@Zn-MOF);(2)氧化鎂奈米粒子均勻分散於Zn-MOF衍生之氧化鋅奈米粒子上(MgO@ZnO),而由結果顯示,透過Zn-MOF作為前軀體材料,可以有效地控制活性成分於高溫下的晶體成長,使之形成極為細小的氧化鎂奈米晶粒(< 5 nm for MgO@Zn-MOF及 ≈10 nm for MgO@ZnO)於奈米結構中,且與直接液相合成法製備之Mg-Zn觸媒(41MgO/ZnO-400)相比,以MOF衍生之Mg-Zn混成式奈米結構不僅在比表面積上,有顯著之增加(最大可達1048.5 m2/g),其表面之鹼度也有所成長(提高1.2倍),此外,在活性測試方面,MgO@Zn-MOF與MgO@ZnO於低醇油比下(Methanol-to-oil molar ratio = 3)亦展現了高催化活性(產率分別為67.6%與73.3%)與極佳之操作穩定度。本研究以氧化鎂作為基底,透過添入不同種類與比例之前驅物開發出具有不同表面物化性質之複合式奈米觸媒,並配合即時之材料分析平台與反應系統來優化觸媒表面之鹼位分布,除此之外,我們也期望可以將此套研究方法應用於其他非匀相鹼催化反應中,作為高值化產品之開發,並以簡易之方式製備出兼具高催化活性與高度穩定性之複合式奈米觸媒。
Abstract
The objective of the study is to develop a facile route for preparation of MgO-based solid base catalysts and establish a complementary material characterization platform and a suitable activity test system. In the first part, we utilize a co-precipitation method to prepare Mg-Al-O composite catalyst for the application of the ring-opening etherification reaction of propylene oxide. In the second part, we employ the incipient wetness impregnation method to develop metal-organic framework (MOF)-derived Mg-Zn hybrid nanocatalysts for transesterfication of soybean oil to biodiesel.
X-ray diffractometer (XRD), Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM), Brunauer-Emmett-Teller analyzer (BET), chemisorption analyzer (TPD), indicator method (Hammett indicator) and, Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) are used complementarily for characterization of catalyst material. The results of the first part show that we can alter the acid-base characteristics of the catalyst surface by adjusting the molar ratio of the magnesium to aluminum in the precursor. When the molar ratio of Mg/Al is nearly between 4-5, the catalyst has the best activity corresponding to its highest amount of the medium basic sites. In the second part, we have successfully fabricated two types of metal-organic framework (MOF)-derived Mg-Zn hybrid nanostructure via a incipient wetness impregnation approach, (1) MgO nanoparticles encapsulated in Zn-based MOF (MgO@Zn-MOF) and (2) MgO nanoparticles uniformly decorated on ZnO nanoparticles derived from Zn-MOF (MgO@ZnO), respectively. The results show that ultrafine MgO nanoparticles (< 5 nm for MgO@Zn-MOF and ≈10 nm for MgO@ZnO) were successfully synthesized and homogeneously dispersed in the MOF-derived Mg-Zn hybrid nanostructures. Significant increases in the specific surface area (i.e., by a maximum of 2.1 times) were achievable by using MOF-based strategy comparing to the Mg-Zn catalyst prepared by a conventional solution-based approach. High 3-cycle stability and high yields of fatty acid methyl esters at a stoichiometric feed ratio 3 were both achievable, 67.6% and 73.3% by using MgO@Zn-MOF and MgO@ZnO as the catalysts, respectively. The work demonstrates a prototype study of utilizing MOF to develop high-performance basic nanocatalysts through fundamental understanding of material synthesis by design versus their corresponding activities. It is also expected that the research methods can be applied to various types of heterogeneous catalytic reactions.
參考文獻
[1] H. Hattori, Heterogeneous basic catalysis, Chem. Rev., 95 (1995) 537-558.
[2] H. Hattori, Solid base catalysts: fundamentals and their applications in organic reactions, Appl. Catal., A, 504 (2015) 103-109.
[3] J. Di Cosimo, V. Dıez, M. Xu, E. Iglesia, C. Apesteguıa, Structure and surface and catalytic properties of Mg-Al basic oxides, J. Catal., 178 (1998) 499-510.
[4] J. Di Cosimo, V. Díez, C. Ferretti, C. Apesteguía, Basic catalysis on MgO: generation, characterization and catalytic properties of active sites, (2014).
[5] V. Dıez, C. Apesteguıa, J.I. Di Cosimo, Acid–base properties and active site requirements for elimination reactions on alkali-promoted MgO catalysts, Catal. Today, 63 (2000) 53-62.
[6] L. Smoláková, K. Frolich, I. Troppová, P. Kutálek, E. Kroft, L. Čapek, Determination of basic sites in Mg–Al mixed oxides by combination of TPD-CO2 and CO2 adsorption calorimetry, J. Therm. Anal. Calorim., 127 (2017) 1921-1929.
[7] H.-y. Zeng, Y.-j. Wang, Z. Feng, K.-y. You, C. Zhao, J.-w. Sun, Synthesis of propylene glycol monomethyl ether over Mg/Al hydrotalcite catalyst, Catal. Lett., 137 (2010) 94-103.
[8] W. Zhang, H. Wang, W. Wei, Y. Sun, Solid base and their performance in synthesis of propylene glycol methyl ether, J. Mol. Catal. A: Chem., 231 (2005) 83-88.
[9] Z.-Q. Zhang, M.-C. Liao, H.-Y. Zeng, S. Xu, L.-H. Xu, X.-J. Liu, J.-Z. Du, Mg–Al hydrotalcites as solid base catalysts for alcoholysis of propylene oxide, Fuel Process. Technol., 128 (2014) 519-524.
[10] W. Cheng, W. Wang, Y. Zhao, L. Liu, J. Yang, M. He, Influence of acid-base properties of ZnMgAl-mixed oxides for the synthesis of 1-methoxy-2-propanol, Appl. Clay Sci., 42 (2008) 111-115.
[11] W. Zhang, H. Wang, Q. Li, Q. Dong, N. Zhao, W. Wei, Y. Sun, The mechanism for the synthesis of 1-methoxy-2-propanol from methanol and propylene oxide over magnesium oxide, Appl. Catal., A, 294 (2005) 188-196.
[12] Y.-S. Chen, C.-M. Yang, T.-T. Nguyen Hoang, D.-H. Tsai, Porous magnesia-alumina composite nanoparticle for biodiesel production, Fuel, 285 (2021) 119203.
[13] K.P. De Jong, Synthesis of solid catalysts, John Wiley & Sons, 2009.
[14] G. Ertl, H. Knözinger, J. Weitkamp, Preparation of solid catalysts, John Wiley & Sons, 2008.
[15] R. Salomao, L. Milena, M. Wakamatsu, V.C. Pandolfelli, Hydrotalcite synthesis via co-precipitation reactions using MgO and Al(OH)3 precursors, Ceram. Int., 37 (2011) 3063-3070.
[16] N. Deraz, The comparative jurisprudence of catalysts preparation methods: I. Precipitation and impregnation methods, J. Ind. Environ. Chem, 2 (2018) 19-21.
[17] W.Y. Hernández, F. Aliç, A. Verberckmoes, P. Van Der Voort, Tuning the acidic–basic properties by Zn-substitution in Mg–Al hydrotalcites as optimal catalysts for the aldol condensation reaction, J. Mater. Sci., 52 (2017) 628-642.
[18] J. Polte, Fundamental growth principles of colloidal metal nanoparticles–a new perspective, CrystEngComm, 17 (2015) 6809-6830.
[19] M. Fang, V. Ström, R.T. Olsson, L. Belova, K.V. Rao, Particle size and magnetic properties dependence on growth temperature for rapid mixed co-precipitated magnetite nanoparticles, Nanotechnology, 23 (2012) 145601.
[20] S.K. Sharma, P.K. Kushwaha, V.K. Srivastava, S.D. Bhatt, R.V. Jasra, Effect of hydrothermal conditions on structural and textural properties of synthetic hydrotalcites of varying Mg/Al ratio, Ind. Eng. Chem. Res., 46 (2007) 4856-4865.
[21] A. Zhang, X.-Y. Li, S. Zhang, Z. Yu, X. Gao, X. Wei, Z. Wu, W.D. Wu, X.D. Chen, Spray-drying-assisted reassembly of uniform and large micro-sized MIL-101 microparticles with controllable morphologies for benzene adsorption, J. Colloid Interface Sci., 506 (2017) 1-9.
[22] M.-Y. Kan, J.H. Shin, C.-T. Yang, C.-K. Chang, L.-W. Lee, B.-H. Chen, K.-L. Lu, J.S. Lee, L.-C. Lin, D.-Y. Kang, Activation-controlled structure deformation of pillared-bilayer metal–organic framework membranes for gas separations, Chem. Mater., 31 (2019) 7666-7677.
[23] S. Gadipelli, W. Travis, W. Zhou, Z. Guo, A thermally derived and optimized structure from ZIF-8 with giant enhancement in CO2 uptake, Energy Environ. Sci., 7 (2014) 2232-2238.
[24] H.-L. Wang, H. Yeh, B.-H. Li, C.-H. Lin, T.-C. Hsiao, D.-H. Tsai, Zirconium-based metal–organic framework nanocarrier for the controlled release of ibuprofen, ACS Appl. Nano Mater., 2 (2019) 3329-3334.
[25] Y.-C. Lai, C.-W. Kung, C.-H. Su, K.-C. Ho, Y.-C. Liao, D.-H. Tsai, Metal–organic framework colloids: disassembly and deaggregation, Langmuir, 32 (2016) 6123-6129.
[26] H.-L. Wang, H. Yeh, Y.-C. Chen, Y.-C. Lai, C.-Y. Lin, K.-Y. Lu, R.-M. Ho, B.-H. Li, C.-H. Lin, D.-H. Tsai, Thermal stability of metal–organic frameworks and encapsulation of CuO nanocrystals for highly active catalysis, ACS Appl. Mater. Interfaces, 10 (2018) 9332-9341.
[27] S. Dang, Q.-L. Zhu, Q. Xu, Nanomaterials derived from metal–organic frameworks, Nat. Rev. Mater., 3 (2017) 1-14.
[28] X. Li, X. Yang, H. Xue, H. Pang, Q. Xu, Metal–organic frameworks as a platform for clean energy applications, EnergyChem, 2 (2020) 100027.
[29] Z. Liang, R. Zhao, T. Qiu, R. Zou, Q. Xu, Metal-organic framework-derived materials for electrochemical energy applications, EnergyChem, 1 (2019) 100001.
[30] B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis, J. Am. Chem. Soc., 130 (2008) 5390-5391.
[31] H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal–organic frameworks, Chem. Rev., (2012).
[32] S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Stable metal–organic frameworks: design, synthesis, and applications, Adv. Mater., 30 (2018) 1704303.
[33] I. Ahmed, B.N. Bhadra, H.J. Lee, S.H. Jhung, Metal-organic framework-derived carbons: Preparation from ZIF-8 and application in the adsorptive removal of sulfamethoxazole from water, Catal. Today, 301 (2018) 90-97.
[34] A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Commercial metal–organic frameworks as heterogeneous catalysts, Chem. Commun., 48 (2012) 11275-11288.
[35] D. Yang, B.C. Gates, Catalysis by metal organic frameworks: perspective and suggestions for future research, ACS Catal., 9 (2019) 1779-1798.
[36] W. Xie, F. Wan, Immobilization of polyoxometalate-based sulfonated ionic liquids on UiO-66-2COOH metal-organic frameworks for biodiesel production via one-pot transesterification-esterification of acidic vegetable oils, Chem. Eng. J., 365 (2019) 40-50.
[37] L. Zhu, X.-Q. Liu, H.-L. Jiang, L.-B. Sun, Metal–organic frameworks for heterogeneous basic catalysis, Chem. Rev., 117 (2017) 8129-8176.
[38] W. Xie, F. Wan, Basic ionic liquid functionalized magnetically responsive Fe3O4@HKUST-1 composites used for biodiesel production, Fuel, 220 (2018) 248-256.
[39] C. Chizallet, S. Lazare, D. Bazer-Bachi, F. Bonnier, V. Lecocq, E. Soyer, A.-A. Quoineaud, N. Bats, Catalysis of transesterification by a nonfunctionalized metal−organic framework: acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations, J. Am. Chem. Soc., 132 (2010) 12365-12377.
[40] Q. Yang, Q. Xu, H.-L. Jiang, Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis, Chem. Soc. Rev., 46 (2017) 4774-4808.
[41] W. Xia, A. Mahmood, R. Zou, Q. Xu, Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion, Energy Environ. Sci., 8 (2015) 1837-1866.
[42] J.-K. Sun, Q. Xu, Functional materials derived from open framework templates/precursors: synthesis and applications, Energy Environ. Sci., 7 (2014) 2071-2100.
[43] L. Oar-Arteta, T. Wezendonk, X. Sun, F. Kapteijn, J. Gascon, Metal organic frameworks as precursors for the manufacture of advanced catalytic materials, Mater. Chem. Front., 1 (2017) 1709-1745.
[44] X. Hou, S.L. Stanley, M. Zhao, J. Zhang, H. Zhou, Y. Cai, F. Huang, Q. Wei, MOF-based C-doped coupled TiO2/ZnO nanofibrous membrane with crossed network connection for enhanced photocatalytic activity, J. Alloys Compd., 777 (2019) 982-990.
[45] F.J. Martín-Jimeno, F. Suárez-García, J.I. Paredes, A. Martínez-Alonso, J.M.D. Tascón, Nickel nanoparticle/carbon catalysts derived from a novel aqueous-synthesized metal-organic framework for nitroarene reduction, J. Alloys Compd., 853 (2021) 157348.
[46] X. Ma, K. Qi, S. Wei, L. Zhang, X. Cui, In situ encapsulated nickel-copper nanoparticles in metal-organic frameworks for oxygen evolution reaction, J. Alloys Compd., 770 (2019) 236-242.
[47] J. Chen, Z. Xing, J. Han, M. Su, Y. Li, A. Lu, Enhanced degradation of dyes by Cu-Co-Ni nanoparticles loaded on amino-modified octahedral metal–organic framework, J. Alloys Compd., 834 (2020) 155106.
[48] K. Yang, K. Yang, S. Zhang, Y. Luo, Q. Yao, Z.-H. Lu, Complete dehydrogenation of hydrazine borane and hydrazine catalyzed by MIL-101 supported NiFePd nanoparticles, J. Alloys Compd., 732 (2018) 363-371.
[49] H.D. Mai, K. Rafiq, H. Yoo, Nano metal-organic framework-derived inorganic hybrid nanomaterials: synthetic strategies and applications, Chem. Eur. J., 23 (2017) 5631-5651.
[50] Q. Wang, D. Astruc, State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis, Chem. Rev., 120 (2020) 1438-1511.
[51] T.-Y. Liang, D. Senthil Raja, K.C. Chin, C.-L. Huang, S.A.P. Sethupathi, L.K. Leong, D.-H. Tsai, S.-Y. Lu, Bimetallic metal–organic framework-derived hybrid nanostructures as high-performance catalysts for methane dry reforming, ACS Appl. Mater. Interfaces, 12 (2020) 15183-15193.
[52] Y.-T. Liao, V.C. Nguyen, N. Ishiguro, A.P. Young, C.-K. Tsung, K.C.W. Wu, Engineering a homogeneous alloy-oxide interface derived from metal-organic frameworks for selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid, Appl. Catal., B, 270 (2020) 118805.
[53] H.K. Lee, C.S. Koh, W.-S. Lo, Y. Liu, I.Y. Phang, H.Y. Sim, Y.H. Lee, G.C. Phan-Quang, X. Han, C.-K. Tsung, X.Y. Ling, Applying a nanoparticle@MOF interface to activate an unconventional regioselectivity of an inert reaction at ambient conditions, J. Am. Chem. Soc., 142 (2020) 11521-11527.
[54] Y.-T. Liao, B.M. Matsagar, K.C.W. Wu, Metal–organic framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass, ACS Sustain. Chem. Eng., 6 (2018) 13628-13643.
[55] C. Zlotea, R. Campesi, F. Cuevas, E. Leroy, P. Dibandjo, C. Volkringer, T. Loiseau, G. Férey, M. Latroche, Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties, J. Am. Chem. Soc., 132 (2010) 2991-2997.
[56] C.-W. Chang, Z.-J. Gong, N.-C. Huang, C.-Y. Wang, W.-Y. Yu, MgO nanoparticles confined in ZIF-8 as acid-base bifunctional catalysts for enhanced glycerol carbonate production from transesterification of glycerol and dimethyl carbonate, Catal. Today, 351 (2020) 21-29.
[57] C.-W. Chang, Y.-H. Kao, P.-H. Shen, P.-C. Kang, C.-Y. Wang, Nanoconfinement of metal oxide MgO and ZnO in zeolitic imidazolate framework ZIF-8 for CO2 adsorption and regeneration, J. Hazard. Mater., (2020) 122974.
[58] M. Sabo, A. Henschel, H. Fröde, E. Klemm, S. Kaskel, Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties, J. Mater. Chem., 17 (2007) 3827-3832.
[59] L. Wang, N.R. Stuckert, H. Chen, R.T. Yang, Effects of Pt particle size on hydrogen storage on Pt-doped metal−organic framework IRMOF-8, J. Phys. Chem. C, 115 (2011) 4793-4799.
[60] Y. Li, R.T. Yang, Significantly enhanced hydrogen storage in metal−organic frameworks via spillover, J. Am. Chem. Soc., 128 (2006) 726-727.
[61] J. Zhang, Q. Cai, J. Zhao, S. Zang, Nano metal oxides as efficient catalysts for selective synthesis of 1-methoxy-2-propanol from methanol and propylene oxide, RSC Adv., 8 (2018) 4478-4482.
[62] R. An, S. Chen, R. Zhang, F. Dai, Z. Zhou, C. Li, R. Liu, W. An, Synthesis of propylene glycol methyl ether catalyzed by imidazole polymer catalyst: Performance evaluation, kinetics study, and process simulation, Chem. Eng. J., 405 (2021) 126636.
[63] J. KIJEŃSKI, B. ZIELIŃSKI, R. ZADROŻNY, S. MALINOWSKI, A new method for poisoning surface active sites: Adsorption of Hammett indicators, Journal of the research institute for catalysis Hokkaido university, 27 (1980) 145-156.
[64] M.W. Anderson, J. Klinowski, Use of Hammett indicators for the study of acidity of zeolite catalysts, Zeolites, 6 (1986) 150-153.
[65] L. Forni, Comparison of the methods for the determination of surface acidity of solid catalysts, Catal Rev Sci Eng, 8 (1974) 65-115.
[66] J.-I. Take, N. Kikuchi, Y. Yoneda, Base-strength distribution studies of solid-base surfaces, J. Catal., 21 (1971) 164-170.
[67] H. Benesi, Acidity of catalyst surfaces. II. Amine titration using Hammett indicators, J. Phys. Chem., 61 (1957) 970-973.
[68] M. Zabeti, W.M.A.W. Daud, M.K. Aroua, Optimization of the activity of CaO/Al2O3 catalyst for biodiesel production using response surface methodology, Appl. Catal., A, 366 (2009) 154-159.
[69] M. Di Serio, M. Ledda, M. Cozzolino, G. Minutillo, R. Tesser, E. Santacesaria, Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts, Ind. Eng. Chem. Res., 45 (2006) 3009-3014.
[70] M. Kouzu, M. Tsunomori, S. Yamanaka, J. Hidaka, Solid base catalysis of calcium oxide for a reaction to convert vegetable oil into biodiesel, Adv. Powder Technol., 21 (2010) 488-494.
[71] M. Kouzu, T. Kasuno, M. Tajika, Y. Sugimoto, S. Yamanaka, J. Hidaka, Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production, Fuel, 87 (2008) 2798-2806.
[72] Y.-R. Lee, M.-S. Jang, H.-Y. Cho, H.-J. Kwon, S. Kim, W.-S. Ahn, ZIF-8: A comparison of synthesis methods, Chem. Eng. J., 271 (2015) 276-280.
[73] J. Cravillon, S. Münzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework, Chem. Mater., 21 (2009) 1410-1412.
[74] K. Nemade, S. Waghuley, Synthesis of MgO nanoparticles by solvent mixed spray pyrolysis technique for optical investigation, Int. J. Met., 2014 (2014).
[75] Á.B. Sifontes, B. Gutierrez, A. Mónaco, A. Yanez, Y. Díaz, F.J. Méndez, L. Llovera, E. Cañizales, J.L. Brito, Preparation of functionalized porous nano-γ-Al2O3 powders employing colophony extract, Biotechnol. Rep., 4 (2014) 21-29.
[76] C. Chizallet, G. Costentin, M. Che, F. Delbecq, P. Sautet, Revisiting acido-basicity of the MgO surface by periodic density functional theory calculations: role of surface topology and ion coordination on water dissociation, J. Phys. Chem. B, 110 (2006) 15878-15886.
[77] W. Muhammad, N. Ullah, M. Haroon, B.H. Abbasi, Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L, RSC Adv., 9 (2019) 29541-29548.
[78] A.C. Sudik, A.P. Côté, A.G. Wong-Foy, M. O'Keeffe, O.M. Yaghi, A metal–organic framework with a hierarchical system of pores and tetrahedral building blocks, Angew. Chem. Int. Ed., 45 (2006) 2528-2533.
[79] H.V. Lee, J.C. Juan, T.-Y. Yun Hin, H.C. Ong, Environment-friendly heterogeneous alkaline-based mixed metal oxide catalysts for biodiesel production, Energies, 9 (2016) 611.
[80] Y.Y. Li, M.M. Wan, X.D. Sun, J. Zhou, Y. Wang, J.H. Zhu, Novel fabrication of an efficient solid base: carbon-doped MgO–ZnO composite and its CO2 capture at 473 K, J. Mater. Chem. A, 3 (2015) 18535-18545.
[81] P. Kumar, V.C. Srivastava, I.M. Mishra, Dimethyl carbonate synthesis by transesterification of propylene carbonate with methanol: comparative assessment of Ce-M (M=Co, Fe, Cu and Zn) catalysts, Renew. Energ., 88 (2016) 457-464.
[82] U.P.N. Tran, K.K.A. Le, N.T.S. Phan, Expanding applications of metal−organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the Knoevenagel reaction, ACS Catal., 1 (2011) 120-127.
[83] T. Maity, D. Saha, S. Das, S. Koner, Barium carboxylate metal–organic framework – synthesis, X-ray crystal structure, photoluminescence and catalytic study, Eur. J. Inorg. Chem., 2012 (2012) 4914-4920.
[84] F.X. Llabrés i Xamena, F.G. Cirujano, A. Corma, An unexpected bifunctional acid base catalysis in IRMOF-3 for Knoevenagel condensation reactions, Microporous Mesoporous Mater., 157 (2012) 112-117.
[85] P. Valvekens, D. Jonckheere, T. De Baerdemaeker, A.V. Kubarev, M. Vandichel, K. Hemelsoet, M. Waroquier, V. Van Speybroeck, E. Smolders, D. Depla, M.B.J. Roeffaers, D. De Vos, Base catalytic activity of alkaline earth MOFs: a (micro)spectroscopic study of active site formation by the controlled transformation of structural anions, Chem. Sci., 5 (2014) 4517-4524.
[86] S.M. Gade, M.K. Munshi, B.M. Chherawalla, V.H. Rane, A.A. Kelkar, Synthesis of glycidol from glycerol and dimethyl carbonate using ionic liquid as a catalyst, Catal. Commun., 27 (2012) 184-188.
[87] G.M. Lari, G. Pastore, C. Mondelli, J. Pérez-Ramírez, Towards sustainable manufacture of epichlorohydrin from glycerol using hydrotalcite-derived basic oxides, Green Chem., 20 (2018) 148-159.
[88] A. Kostyniuk, D. Bajec, P. Djinović, B. Likozar, One-step synthesis of glycidol from glycerol in a gas-phase packed-bed continuous flow reactor over HZSM-5 zeolite catalysts modified by CsNO3, Chem. Eng. J., 394 (2020) 124945.
[89] M.J. Climent, A. Corma, P. De Frutos, S. Iborra, M. Noy, A. Velty, P. Concepción, Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid–base pairs, J. Catal., 269 (2010) 140-149.