簡易檢索 / 詳目顯示

研究生: 李建融
Jian-Rong Li
論文名稱: 0.25um BCD 製程之BJT元件直流特性分析
The DC Characteristic Analysis of 0.25um BCD Process BJT Devices
指導教授: 龔正
J.Gong
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 111
中文關鍵詞: 雙極性接面電晶體直流特性BCDIB曲線
外文關鍵詞: BJT, DC Characteristic, BCD, IB curve
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 所謂的BCD製程技術,即是將Bipolar、CMOS及DMOS等電晶體元件整合於單一晶片中,可形成所謂智慧型功率積體電路(Smart Power ICs)的製程技術,而其中的Bipolar元件主要功用為提供此電路所需的高頻與高驅動電流等功能。本篇論文的主要目的即是在探討0.25um BCD製程中BJT元件之直流特性。一方面先量測分析實際BJT元件的直流特性;另一方面則是以軟體來模擬探討BJT元件的內部電性。並且研究Gummel Plot上在較小VBE偏壓值時,IB曲線出現向下尖突之原因。希望藉由瞭解BJT元件在各種直流特性上的表現與成因,來改善其特性,進而提高整體功率積體電路之性能。


    The so-called BCD process technology is to integrate transistor devices, such as Bipolar, CMOS and LDMOS, into one chip so as to form a Smart Power integrated circuit. And the main function of a Bipolar device is to provide high-frequency and high-drive current to meet the needs of the circuit. The purpose of the paper is to discuss the DC characteristic of a BJT device in 0.25um BCD process. On the one hand, we measure and analyze the DC characteristic of an actual BJT device; on the other hand, we use the software to stimulate and explore the internal electrical properties of a BJT device. Furthermore, we analyze the reasons of a downward peak in the IB curve when there is a lower VBE bias on the Gummel plot. It is our hope that by understanding the performance and cause of the DC characteristics of BJT device, we can improve its properties, and moreover, advance the entire performance of power integrated circuits.

    摘要 І 目錄 Ш 第一章 前言 1 第二章 BCD製程簡介與BJT元件之基本物理特性回顧 2 2.1 BCD製程簡介 2 2.2 雙極性電晶體工作原理 4 2.2.1 電晶體結構 4 2.2.2 操作模式 5 2.2.3 電流增益 5 2.2.4 主動模式下理想電晶體電流 7 2.3 不理想的效應 9 2.3.1 基極寬度調變 9 2.3.2 高注入效應 10 2.3.3 電流擁擠效應 11 2.3.4 崩潰電壓 12 2.4 內部阻抗之萃取 15 2.4.1 射極內部阻抗RE 15 2.4.2 集極內部阻抗RC 16 第三章 0.25um BCD製程 BJT之直流特性量測 26 3.1 0.25um BCD製程之BJT元件結構 26 3.2 BJT元件之直流特性 27 3.2.1 Gummel Plot特性曲線圖與歸一化 27 3.2.2 β- VBE之特性曲線圖 27 3.2.3 IC-VCE之特性曲線圖 27 3.2.4 開路崩潰電壓 28 3.2.4.1 射極開路崩潰電壓BVCBO 28 3.2.4.2 集極開路崩潰電壓BVCEO 28 3.3 BJT元件內部串連電阻之萃取 30 3.3.1 RE之萃取 30 3.3.2 RC之萃取 30 3.4 射極長度(LE)對BJT元件直流特性之影響 31 3.4.1 Gummel Plot 特性曲線圖 31 3.4.2 β-VBE之特性曲線圖 31 3.4.3 IC-VCE之特性曲線圖 32 3.4.4 開路崩潰電壓 32 3.4.4.1 射極開路崩潰電壓BVCBO 32 3.4.4.2 集極開路崩潰電壓BVCEO 32 3.4.5 RE之萃取 33 3.4.6 RC之萃取 33 第四章 0.25um BCD BJT之特性分析與電性模擬 51 4.1 BJT元件基本直流特性之模擬 51 4.1.1 Gummel Plot特性之模擬 51 4.1.2 β-VBE特性之模擬 52 4.1.3 IC-VCE特性之模擬 52 4.1.4 開路崩潰電壓BVCBO與BVCEO特性之模擬 52 4.2 模擬與量測之比較與分析 54 4.3 射極長度對BJT元件直流特性影響之探討與分析 55 4.3.1 Gummel Plot特性之模擬 55 4.3.2 β-VBE特性之模擬 56 4.3.3 IC-VCE特性之模擬 56 4.3.4 開路崩潰電壓BVCBO特性之模擬 57 第五章 0.25um BCD製程 BJT 之IB特性曲線之分析 72 5.1 前言 72 5.2 IB特性曲線模擬與量測之比較 73 5.3 IB曲線電性模擬分析 74 5.4 IB特性曲線成因探究 76 5.4.1 IBCO 76 5.4.2 IBEO 77 5.4.3 IB(SUM) 77 5.4.4 分析討論 78 5.5 實際量測之IB曲線特性分析 80 5.6 IB特性曲線與基極區各種佈局長度之關係 82 5.6.1 LSTI2 82 5.6.2 LB 82 5.6.3 LSTI3 83 5.6.4 LE 83 5.6.5 分析討論 83 第六章 結論 109 參考資料 110

    [1] D. A. Neamen , “Semiconductor Physics And Devices Basic
    Principle”, Copyright 2003 by MGH, 3rd
    [2] S. M. Sze , ” Semiconductor Devices Physics and Technology” ,
    Copyright 1981 by JWS, 2nd
    [3] Dieter K. Schroder , “Semiconductor material and device
    characterization” , John Wiley & Sons , 2nd
    [4] B. J. Baliga , “Power Semiconductor Devices” , Copyright 1996 by
    PWS
    [5] SYNOPSYS TSUPREM-4, Two-Dimensional Process Simulation
    Program,Version-2006.06
    [6] SYNOPSYS MEDICI, Two-Dimensional Device Simulation
    Program, Version-2006.06
    [7] H. J. J. De Man, "The lnfluence of Heavy Doping on the Emitter
    Efficiency of a Bipolar Transistor," IEEE Trans. Electron Devices,
    ED-18,pp.833, 1971﹒
    [8] Jun-lin Tsai , Jei-feng Huang , Shih-hui Chen , Jeng Gong ,
    Ruey-hsin Liou , and Shun-liang Hsu , “High Voltage NPN-Bipolar
    Transistor Using P+-Buried Layer in BiCMOS Process” , IEDM Tech
    Dig, pp 189-192,1999
    [9] H Funaki , Y Yamaguchi , Y Kawaguchi , et al “High voltage
    BiCDMOS technology on bonded 2pm SOI integrating vertical
    npn pnp, 60V-LDMOS and MPU, capable of 200°C operation” ,
    IEDM Tech Dig , pp 967-970. 1995
    [10] J.A. Appels and H.M.J. Vaes , “High voltage thin layer
    devices(RESURF Devices)”, IEDM Tech Dig , pp 238~241, 1979
    [11] M.A. Shibib , “Experimental investigation of high voltage and high
    current gain of a lateral bipolar transistor based on a lateral DMOS
    structure” , ISPSD 96’ Proceedings, pp 21 1-214, 1996
    [12] Torkel Arnborg , “Modelling and Simulation of High Speed, High
    Voltage Bipolar SO1 Transistor with Fully Depleted Collector” ,
    IEDM Tech Dig , pp 743-746. 1994
    [13] Ju-Sung Park and Arnost Neugroschel , "Current Dependence of the
    Emitter Resistance of Bipolar Transistors", IEEE trans. Electron Devices,
    vol. 37, no.6, pp.1540-1542, June, 1990.
    [14] H. C. Poon, H. K. Gummel, D. L. Scharfetter, "High injection in
    epitaxial transistor," IEEE TED, pp.455-458, May, 1969
    [15] Dermot MacSweeney, “Improved Modeling and Parameter Extraction of
    Bipolar Devices,” M.Eng.Sc.,N.M.R.C.,U.C.C,Ireland,Oct.1995.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE