簡易檢索 / 詳目顯示

研究生: 廖俊程
Liao, Chun-Cheng
論文名稱: 設計與合成3,5-二氰基-2,6-二苯基吡啶衍生物之熱活化延遲螢光材料及其於有機發光二極體之應用
Design and Synthesis of 2,6-Diphenylpyridine-3,5-dicarbonitrile Derivatives As Thermally Activated Delayed Fluorescence Emitters And Their Applications In Organic Light Emitting Diodes
指導教授: 鄭建鴻
Cheng, Chien-Hong
口試委員: 洪文誼
Hung, Wen-Yi
周鶴修
Chou, Ho-Hsiu
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 232
中文關鍵詞: 有機發光二極體發光元件熱活化延遲螢光放光藍光元件綠光元件
外文關鍵詞: blue OLED devices, green OLED devices
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇研究中我們將設計與合成含吡啶與不同的電子予體所構成的一系列熱活化延遲螢光放光材料,其中包括CzdmMPC、tCzdmMPC、246CzPPC、4CzPPC、4tCzPPC、4dpaPPC。這系列化合物依照電子予體及電子受體綜合的影響,其光色分布從深藍光至綠光。而在甲苯溶液所量測到的螢光放光光譜的波峰從最短的431 nm到502 nm,最低單重激發態與最低三重激發態的能階差ΔEST分別為0.64、0.58、0.22、0.30、0.23、0.20 eV,其中ΔEST較大的CzdmMPC、tCzdmMPC經由暫態螢光光譜(Transient PL)測量發現沒有熱活化延遲螢光(Thermally activated delayed fluorescence,TADF)的效應,而ΔEST較小的其他分子皆可以觀察到除了來自於直接螢光外的延遲螢光,代表三重激發態激發子可以經由環境中的熱能回到單重激發態進行放光,則有TADF效應。其中TADF材料的熱裂解溫度皆大於300 °C以上,代表在應用上可以有良好的熱穩定性,因此我們將這系列有機發光材料應用在有機發光二極體元件上,並調整不同條件包括發光層濃度、傳輸層厚度、有無阻擋層以便達到最佳的效率。其中,不具TADF性質的CzdmMPC、tCzdmMPC如同我們所預想般,經過最佳化條件後外部量子效率分別只有2.89%及3.12%,最大亮度分別只有551 cd/m2與1318 cd/m2,符合理論螢光元件5%的外部量子效率;而經過暫態螢光光譜所測得具有TADF效應的四個分子,分別是246CzPPC、4CzPPC、4tCzPPC、4dpaPPC經過元件的最佳化後都具有相當不錯的效率。其中藍光元件246CzPPC、4CzPPC、4tCzPPC中表現最佳的為4tCzPPC,經過最佳化結構後的最大外部量子效率為27.6%、最大亮度4539 cd/m2,其元件電激發光譜的峰波長位於494 nm,CIE為(0.18,0.41)。而表現最佳的為綠光元件的4dpaPPC,在元件的應用中達到了相當高的外部量子效率36.4 ± 1.5%、最大亮度8365 cd/m2,經由變角度光譜儀量測得知其有相當好的水平排列造成出光率較高、發光層的電荷平衡佳、使用折射率較低的傳輸層材料,以上三個條件都使4dpaPPC這個客體摻雜材料有非常高效的表現。


    Thermally activated delayed-fluorescence (TADF) materials are important in future OLED display and lighting, especially on deep blue dopants are still challenging these days. In this research, we design a new series of pyridine derivatives such as CzdmMPC, tCzdmMPC, 246CzPPC, 4CzPPC, 4tCzPPC, 4dpaPPC and these six new materials were synthesized. We combined different electron donor and electron acceptor to achieve the color range from deep blue to green, wavelength range from 431 nm to 502 nm measured in 10-5M toluene solution. Furthermore, we calculated the energy gap between singlet excited state and triplet excited state (ΔEST), the ΔEST are 0.64、0.58、0.22、0.30、0.23、0.20 eV respectively for the above compounds. And CzdmMPC, tCzdmMPC has been using Transient PL to find out that they only give prompt fluorescence, since they both have relatively big ΔEST. Others compounds such as 246CzPPC、4CzPPC、4tCzPPC、4dpaPPC they all got TADF properties with detecting delayed fluorescence on Transient PL, since their ΔEST are relatively small (below 300 meV). All of these compounds has high Td above 300°C showing good thermal stability when applying on device. Furthermore, CzdmMPC and tCzdmMPC shows poor external quantum efficiencies 2.89% and 3.12%, maximum luminescence were 551 cd/m2 and 1318 cd/m2, since they got relatively big ΔEST so their efficiencies only close to theoretical fluorescence dopant emitter.
    We further improved the device structure for the four TADF materials 246CzPPC、4CzPPC、4tCzPPC、4dpaPPC, by adjusting the concentration of emitting layer, changing the thickness of transporting layer, with or without blocking layer to get better device performance. Among these four TADF materials, 4tCzPPC showed the maximum external quantum efficiencies 27.6% for sky-blue OLED devices, maximum luminance is 4539 cd/m2, it gives peak wavelength at 494 nm, and (0.18,0.41) for the CIE values.
    And the best performance among these four TADF materials is 4dpaPPC, it has maximum external quantum efficiencies at 36.4 ± 1.5%, maximum luminance at 8365 cd/m2. We did some investigation for these device, such as performing unipolar device to prove that there has excellent charge balance in the emitting layer; also did the angle-dependent PL measurement, and found out that 4dpaPPC doped in mCPCN host has excellent horizontal dipole moment alignment for the result Θ = 0.86, and finally the excellent efficiencies is also achieved by using low refractive index (low-n) transporting layer as TAPC and 3TPYMB, these three conditions is the reason for the outstanding performance of 4dpaPPC device.

    摘要......................................................I Abstract.................................................III 目錄....................................................VI 圖目錄...................................................IX 表目錄..................................................XV 第一章 緒論..............................................1     第一節 有機電致發光的演進........................2     第二節 有機發光二極體元件結構....................9     第三節 螢光與磷光之放光機制.....................12     第四節 OLED元件的效率.........................16     第五節 主客體能量傳遞...........................21     第六節 熱活化延遲螢光放光(Thermally Activated Delay     Fluorescence)材料原理與分子設計發展..............27     第七節 OLED元件壽命...........................35     參考文獻.........................................40 第二章 設計與合成具雙偶極性含腈基及吡啶結構之客體材料於螢     光有機電致發光元件...............................44     第一節 前言與研究動機...........................45     第二節 熱活化延遲螢光客體材料的合成與鑑定.......63     第三節 含腈基及吡啶結構之熱活化延遲螢光材料的理論     計算探討和單晶繞射結構分析.......................83     第四節 吸收光譜與放光光譜及材料之最高佔有軌(HOMO)能階之量 測.......................................90     第五節 最低單重與三重激發態能階的測量..........107     第六節 材料熱穩定性質的量測....................112     第七節 暫態延遲激發光譜(Transient PL)用以測量延遲螢     光..............................................117     參考文獻........................................125 第三章 含吡啶結構之客體材料於螢光有機發光二極體之應用..129     第一節 元件結構的嘗試及最佳化..................132     第二節 深藍光客體材料的元件結構及表現..........134     第三節 天藍光客體材料的元件結構及表現..........145     第四節 綠光客體材料的元件表現..................170     參考文獻........................................184     結論............................................187     附錄一 藥品、儀器、元件製作......................189     附錄二 X光單晶繞射結構分析....................195     附錄三 核磁共振光譜資料........................204

    第一章
    [1] P. E. Burrows, G. Gu, V.Bulovic, Z.Shen, S. R. Forrest, M. E. Thompson, IEEE Trans. Electron Device, 1997, 44, 11888.
    [2] P. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys., 1963, 38, 2042.
    [3] C. W. Tang, S. A. Van Slyke, Appl. Phys. Lett., 1987, 51, 913
    [4] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. D. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature, 1990, 347, 539.
    [5] A. L. Burin, Mark A. Ratner, J. Phys. Chem. A, 2000, 104, 4704
    [6] M.Oehzelt, K. Akaike, N. Koch, Georg Heimel, Sci. Adv., 2015, 1
    [7] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forest, Nature, 1998, 394, 151
    [8] C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forest, J. Appl. Phys., 2001, 90, 5048
    [9] C. X. Sheng, S. Singh, A. Gambetta, T. Drori, M. Tong, S. Tretiak, Z. V. Vardeny, Sci. Rep., 2013, 3, 2653
    [10] Joseph F. Revelli, Lee W. Tutt, and Brian E. Kruschwitz, Appl. Opt., 2005, 44, 3324
    [11] V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, S. R. Forrest, Phys. Rev. B., 1998, 58, 3730
    [12] Kondakov, D. Y.; Pawlik, T. D.; Hatwar, T. K.; Spindler, J. P., J. Appl. Phys., 2009, 106, 12
    [13] Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, Wei Huang, Adv. Mater., 2014, 26, 47
    [14] C. W. Tang, S. A. VanSlyke, C. H. Chen, J. Appl. Phys., 1989, 65, 3610
    [15] M. A. Baldo, C. Adachi, S. R. Forrest, Phys. Rev. B, 2000, 62, 10967
    [16] D. F. O’Brien, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett., 1999, 74, 442
    [17] D. L. Dexter, J. Chem. Phys., 1953, 21, 836
    [18] Y. N. Chiu, J. Chem Phys, 1973, 58, 722
    [19] T. Förster, Discuss. Faraday Soc., 1959, 27, 7
    [20] M. A. Baldo, D. F. O’Brien, M. E. Thompson, S. R. Forrest, Phys. Rev. B., 1999, 60, 20
    [21] G. Ponterini, N. Serpone, M. A. Bergkamp, T. L. Netzel, J. Am. Chem. Soc. 1983, 105, 4639
    [22] Q. Peng, E. T. Kang, K. G. Neoh, D. Xiao, D. Zou, J. Mater. Chem. 2006, 16, 376
    [23] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, Y. Taga, Appl. Phys. Lett. 2001, 79, 156-158
    [24] A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, C. Adachi, Appl. Phys. Lett. 2011, 98, 083302.
    [25] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.
    [26] M. Y. Wong, E. Zysman-Colman, Adv. Mater. 2017, 29, 1605444.
    [27] F. B. Dias, T. J. Penfold, A. P. Monkman, Methods and Applications in Fluorescence 2017, 5, 012001.
    [28] Y. Im, M. Kim, Y. J. Cho, J.-A. Seo, K. S. Yook, J. Y. Lee, Chem. Mater. 2017, 29, 1946-1963.
    [29] Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, Adv. Mater. 2014, 26, 7931-7958.
    [30] B. Milián-Medina, J. Gierschner, Org. Electron. 2012, 13, 985-991.
    [31] J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718-11940.
    [32] S. Hirata, Y. Sakai, K. Masui, H. Tanaka, S. Y. Lee, H. Nomura, N. Nakamura, M. Yasumatsu, H. Nakanotani, Q. Zhang, K. Shizu, H. Miyazaki, C. Adachi, Nat. Mater. 2014, 14, 330.
    [33] M. Klessinger, Angew. Chem. Int. Ed. 1995, 34, 549-551.
    [34] H. Aziz, Z. D. Popovic, N.-X. Hu, Appl. Phys. Lett. 2002, 81, 370-372.
    [35] D. Y. Kondakov, J. R. Sandifer, C. W. Tang, R. H. Young, J. Appl. Phys. 2003, 93, 1108-1119.
    [36] D. Y. Kondakov, J. R. Sandifer, C. W. Tang, R. H. Young, J. Appl. Phys. 2003, 93, 1108-1119.
    [37] H. Yan, P. Lee, N. R. Armstrong, A. Graham, G. A. Evmenenko, P. Dutta, T. J. Marks, J. Am. Chem. Soc. 2005, 127, 3172-3183.
    [38] C. Yan, M. Zharnikov, A. Gölzhäuser, M. Grunze, Langmuir 2000, 16, 6208-6215.
    [39] S. Hofmann, M. Thomschke, B. Lüssem, K. Leo, Opt. Express 2011, 19, A1250-A1264.

    第二章
    [1] L. H. Smith, J. A. E. Wasey, W. L. Barnes, Appl. Phys. Lett. 2004, 84, 2986-2988.
    [2] D. Song, S. Zhao, Y. Luo, H. Aziz, Appl. Phys. Lett. 2010, 97, 243304.
    [3] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.
    [4] Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, Adv. Mater. 2014, 26, 7931-7958.
    [5] H. Kaji, H. Suzuki, T. Fukushima, K. Shizu, K. Suzuki, S. Kubo, T. Komino, H. Oiwa, F. Suzuki, A. Wakamiya, Y. Murata, C. Adachi, Nat. Comm. 2015, 6, 8476.
    [6] F. B. Dias, T. J. Penfold, A. P. Monkman, Methods and Applications in Fluorescence 2017, 5, 012001.
    [7] T. Huang, W. Jiang, L. Duan, J. Mater. Chem. C 2018, 6, 5577-5596.
    [8] J. W. Sun, K.-H. Kim, C.-K. Moon, J.-H. Lee, J.-J. Kim, ACS Appl. Mater. Interfaces 2016, 8, 9806-9810.
    [9] W. Liu, C.-J. Zheng, K. Wang, Z. Chen, D.-Y. Chen, F. Li, X.-M. Ou, Y.-P. Dong, X.-H. Zhang, ACS Appl. Mater. Interfaces 2015, 7, 18930-18936.
    [10] W. Li, D. Liu, F. Shen, D. Ma, Z. Wang, T. Feng, Y. Xu, B. Yang, Y. Ma, Adv. Funct. Mater. 2012, 22, 2797-2803.
    [11] H. Sasabe, N. Onuma, Y. Nagai, T. Ito, J. Kido, Chemistry – An Asian Journal 2017, 12, 648-654.
    [12] Z. Chen, Z. Wu, F. Ni, C. Zhong, W. Zeng, D. Wei, K. An, D. Ma, C. Yang, J. Mater. Chem. C 2018, 6, 6543-6548.
    [13] X.-F. Wu, in Transition Metal-Catalyzed Pyridine Synthesis (Ed.: X.-F. Wu), Elsevier, 2016, pp. 1-2.
    [14] J. Jayakumar, T.-L. Wu, M.-J. Huang, P.-Y. Huang, T.-Y. Chou, H.-W. Lin, C.-H. Cheng, ACS Appl. Mater. Interfaces 2019, 11, 21042-21048.
    [15] M. Liu, R. Komatsu, X. Cai, K. Hotta, S. Sato, K. Liu, D. Chen, Y. Kato, H. Sasabe, S. Ohisa, Y. Suzuri, D. Yokoyama, S.-J. Su, J. Kido, Chem. Mater. 2017, 29, 8630-8636.
    [16] T.-L. Wu, M.-J. Huang, C.-C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W. Chen-Cheng, H.-W. Lin, R.-S. Liu, C.-H. Cheng, Nat. Photonics 2018, 12, 235-240.
    [17] I. S. Park, H. Komiyama, T. Yasuda, Chem. Sci. 2017, 8, 953-960.
    [18] F. B. Dias, T. J. Penfold, A. P. Monkman, Methods and Applications in Fluorescence 2017, 5, 012001.
    [19] K. Shizu, H. Noda, H. Tanaka, M. Taneda, M. Uejima, T. Sato, K. Tanaka, H. Kaji, C. Adachi, J. Phys. Chem. C 2015, 119, 26283-26289.
    [20] T. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono, T. Ikuta, Adv. Mater. 2016, 28, 2777-2781.
    [21] D. H. Ahn, S. W. Kim, H. Lee, I. J. Ko, D. Karthik, J. Y. Lee, J. H. Kwon, Nat. Photonics 2019.
    [22] Y. Zhang, C. Qiu, Y. Li, W. Zhang, W. Xuan, Materials Science-Poland 2014, 32, 402-407.
    [23] X. Ouyang, X.-L. Li, X. Zhang, A. Islam, Z. Ge, S.-J. Su, Dyes and Pigments 2015, 122, 264-271.
    [24] V. Bulović, A. Shoustikov, M. A. Baldo, E. Bose, V. G. Kozlov, M. E. Thompson, S. R. Forrest, Chem. Phys. Lett. 1998, 287, 455-460.
    [25] Y. Im, M. Kim, Y. J. Cho, J.-A. Seo, K. S. Yook, J. Y. Lee, Chem. Mater. 2017, 29, 1946-1963.
    [26] K. Kwak, K. Cho, S. Kim, Opt. Express 2013, 21, 29558-29566.
    [27] M. Y. Berezin, S. Achilefu, Chem. Rev. 2010, 110, 2641-2684.
    [28] Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem. Soc. Rev. 2017, 46, 915-1016.
    [29] S. Wu, M. Aonuma, Q. Zhang, S. Huang, T. Nakagawa, K. Kuwabara, C. Adachi, J. Mater. Chem. C 2014, 2, 421-424.
    [30] Q. Zhang, H. Kuwabara, W. J. Potscavage, S. Huang, Y. Hatae, T. Shibata, C. Adachi, J. Am. Chem. Soc. 2014, 136, 18070-18081.

    第三章
    [1] J. Jayakumar, T.-L. Wu, M.-J. Huang, P.-Y. Huang, T.-Y. Chou, H.-W. Lin, C.-H. Cheng, ACS Applied Materials & Interfaces 2019, 11, 21042-21048.
    [2] T.-A. Lin, T. Chatterjee, W.-L. Tsai, W.-K. Lee, M.-J. Wu, M. Jiao, K.-C. Pan, C.-L. Yi, C.-L. Chung, K.-T. Wong, C.-C. Wu, Adv. Mater. 2016, 28, 6976-6983.
    [3] T.-L. Wu, M.-J. Huang, C.-C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W. Chen-Cheng, H.-W. Lin, R.-S. Liu, C.-H. Cheng, Nat. Photonics 2018, 12, 235-240.
    [4] J. H. Kim, D. R. Lee, S. H. Han, J. Y. Lee, J. Mater. Chem. C 2018, 6, 5363-5368.
    [5] T.-L. Wu, S.-Y. Liao, P.-Y. Huang, Z.-S. Hong, M.-P. Huang, C.-C. Lin, M.-J. Cheng, C.-H. Cheng, ACS Appl. Mater. & Interfaces 2019, 11, 19294-19300.
    [6] M. Colella, P. Pander, D. d. S. Pereira, A. P. Monkman, ACS Appl. Mater. & Interfaces 2018, 10, 40001-40007.
    [7] X.-K. Liu, Z. Chen, C.-J. Zheng, C.-L. Liu, C.-S. Lee, F. Li, X.-M. Ou, X.-H. Zhang, Adv. Mater. 2015, 27, 2378-2383.
    [8] H. S. Kim, S.-R. Park, M. C. Suh, J. Phys. Chem. C 2017, 121, 13986-13997.
    [9] P. L. dos Santos, M. K. Etherington, A. P. Monkman, J. Phys. Chem. C 2018, 6, 4842-4853.
    [10] C. Xiang, X. Fu, W. Wei, R. Liu, Y. Zhang, V. Balema, B. Nelson, F. So, Adv. Funct. Mater. 2016, 26, 1463-1469.
    [11] Y. Zhang, Z. Li, C. Li, Y. Wang, Frontiers in Chemistry 2019, 7.
    [12] D. H. Ahn, S. W. Kim, H. Lee, I. J. Ko, D. Karthik, J. Y. Lee, J. H. Kwon, Nat. Photonics 2019, 13, 540-546.
    [13] Proc. of ASID’06, 8-12 Oct, New Delhi
    [14] S. Möller, S. R. Forrest, J. Appl. Phys. 2002, 91, 3324-3327.
    [15] A. Graf, P. Liehm, C. Murawski, S. Hofmann, K. Leo, M. C. Gather, J. Mater. Chem. C 2014, 2, 10298-10304.
    [16] W.-K. Lee, Y.-H. Huang, K.-C. Pan, T.-A. Lin, T. Chatterjee, K.-T. Wong, C.-C. Wu, J. Photonics Energy 2018, 8, 1-9, 9.
    [17] N. Nakamura, N. Fukumoto, N. Wada, M. Ohgawara, J. Appl. Phys. 2015, 117, 055502.
    [18] S. Wang, X. Wang, B. Yao, B. Zhang, J. Ding, Z. Xie, L. Wang, Sci. Rep. 2015, 5, 12487.

    QR CODE