簡易檢索 / 詳目顯示

研究生: 謝鎮宇
Hsieh, Chen Yu
論文名稱: 微裂縫滲水結冰對複合材料負載能力之影響
The effect of freezing ice on the loading capacity of fiber composite plates containing a microcrack
指導教授: 蔣長榮
Chiang, Chun Ron
口試委員: 葉孟考
Yeh, Meng Kao
王偉中
Wang, Wei Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 72
中文關鍵詞: 裂縫複合材料結冰
外文關鍵詞: crack, composite material, freezing ice
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文將探討一含邊緣裂縫之碳纖維環氧樹脂複合材料平板,當水氣沿著裂縫滲透入平板後,結冰體積膨脹而導致裂縫前端附近應力集中的現象,另外會探討裂縫周圍各角度的應力,還有溫度低於攝氏零度下後,因熱膨脹係數不同造成的應力,以及結冰體積膨脹受到限制的情況,透過有限元素套裝軟體ANSYS來進行本文的模擬和分析,並利用滑順因子推導不同裂縫尺寸時的應力強度因子。
    結果顯示,裂縫長度越長,應力場越大,在y走向纖維複材中裂縫長度對應力場的影響較明顯。在裂縫前端,纖維y走向所得之應力強度因子比纖維z走向所得之應力強度因子大。纖維方向為y走向之模型,裂縫尖端的應力場下降的斜率較纖維z走向大。而當溫度降至攝氏零度以下所產生之應力遠小於結冰時所產生之應力,可忽略其影響。若結冰膨脹位移受限,在裂縫接近複材邊緣的情況下,應力值將大幅提升。若裂縫位置靠近複材中央,應力值雖有上升但不明顯。


    This thesis is on the carbon/epoxy composite plates containing a microcrack, which traps in water. When temperature is at freezing point, the volume of water will expand and cause stress concentration at the tip of the crack. The stresses at the different angle around the tip of crack are analyzed, and the condition that the temperature is below 0° Celsius is also considered. The simulation and analysis of this study have been done with ANSYS, and the stress intensity factors have been calculated by using the stress rounding factor.
    The results show that the longer crack causes the greater the stress. It is also found that the crack length affect more to stress field when fiber orientation in y direction. For the same crack size, the stress intensity factors are greater for the y-direction fiber than for z-direction fiber. The stress gradient near the tip of the crack descends more for y-direction fiber composites than for z-direction-fiber composites. When the temperature is below 0° Celsius, the stresses are far smaller than those at 0° Celsius. In the situation that the freezing ice is well contained in the composite plate, for the crack being near the edge of the plate, the stress increases dramatically. While the crack is near the center of the plate, the stress is slightly larger than that a edge-crack plate.

    目錄 摘要 I 目錄 II 圖目錄 V 表目錄 VIII 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 2 1.3文獻回顧 3 第二章 基本理論 5 2.1 熱應力、應變之關係 5 2.2破裂力學[1] 6 2.3 正交性材料的破裂尖端應力場[12][13] 6 2.5 應力滑順因子(STRESS ROUNDING FACTOR) 8 2.6破壞理論 9 第三章 有限單元分析 10 3.1 有限元素法基本概念[17] 10 3.2 平面問題之有限單元法[18] 11 3.3用能量原理求單元剛度矩陣及平衡方程式[17][18] 12 3.4 等參數單元(ISOPARAMETRIC ELEMENT)[18] 15 第四章 模型分析與建立 18 4.1 問題描述 18 4.2 模型建立 18 4.2.1含邊緣裂縫之模型 18 4.2.2 含半圓型缺口之模型 19 4.2.3 冰膨脹受到限制之模型 19 4.3 模型網格化與收斂性分析 20 第五章 結果與討論 22 5.1 模型應力分佈 22 5.1.1水結冰狀態 22 5.1.2 結冰膨脹受到限制之模型 24 5.1.3含半圓型缺口之模型 25 5.2應力強度因子的計算 25 5.2.1纖維y走向複材之應力滑順因子 26 5.2.2纖維z走向複材之應力滑順因子 27 5.3應力強度因子計算結果 28 第六章 結論 29 參考文獻 30

    [1]D. Broek , Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publisher, Dordrecht,1986.
    [2] http://alfredcave.blogspot.tw/2009/07/blog-post_4986.htm l (引 用時間:2014/11/19)
    [3]A. A. Griffith, “The phenomena of rupture and flow in solids”, Philosophical Transactions of the Royal Society of London, Series A, Vol. 221,pp. 163–198, 1921
    [4]G. R. Irwin, “Fracture Dynamics”. Fracturing of Metals. American Society Metals, Ohio, Cleveland, pp. 147-166,1948.
    [5]M. L. Williams, “Stress singularities resulting from various boundary conditions in angular corners of plates in extension”, Journal of Applied Mechanics,Vol.19, pp. 526–528,1952.
    [6]E.Orowan, “Energy Criteria of Fracture”, Welding Journal, Vol. 34, pp. 1575-1605, 1995.
    [7]G.R.Irwin , “ Analysis of stresses and strains near the end of a crack traversing a plate”, Journal of Applied Mechanics ,Vol.24, pp.361– 364,1957.
    [8]蔡禾凱,正交性複合材料中裂縫前端的微觀尺度應力強度因子, 碩士論文,國立清華大學,2004。
    [9]蔡佳豪,含邊緣裂縫之複合材料平板在兩種不同纖維走向下之熱 應力分析,碩士論文,國立清華大學,2012。
    [10]王斐治,含邊緣裂縫之複合材料平版在板內受熱對流影響下支 應力分析,碩士論文,國立清華大學,2013。
    [11]施峻源,含邊緣裂縫之纖維複合材料平板在版面受熱通量影響 下之熱應力分析,碩士論文,國立清華大學,2014。
    [12]C. R. Chiang, “The Stress Field for a Blunt Crack in Anisotropic Material,” International Journal of Fracture, Vol. 68, R41-R46, 1994, and addendum in International Journal of Fracture, Vol. 70, R99, 1995.
    [13]S. Parhizgar, L. W. Zachary, and C.T. Sun, “Application of the principles of linear fracture mechanics to the composite materials,” International Journal of Fracture, Vol. 20, pp. 3-15, 1982.
    [14]C. R. Chiang, “The Elastic Stress Fields Near Blunt Crack Tips in Orthotropic Materials,” 第十六屆機械工程研討會論文集,pp. 366-372, 1999.
    [15]J. P. Benthem, “Stress in the Region of Rounded Corners,” International Journal of Solids and Structures, Vol. 23, pp. 239-252, 1987.
    [16]C. R. Chiang, “ On Stress Concentration Factors in Orthotropic Materials,” Journal of the Chinese institute of Engineers, Vol. 22, No. 3, pp. 301-305, 1999.
    [17]王勖成編著,有限單元法,清華大學出版社,北京,2003。
    [18]張洪信、管殿柱編著,有限元基礎理論與ANSYS11.0應用,機 械工業出版社出版,北京,2009。
    [19]R. F. Gibson, Principles of Composite Material Mechanics, 2nd Ed., CRC Press, Boca Raton, 2007.
    [20]J. V. Bausano, Structural Integrity of Polymer Matrix Composites Exposed to Fire Conditions, Master’s thesis, Virginia Polytechnic Institute and State University, 2003.
    [21]Help documentation from “Software : ANSYS 11.0”.
    [22]E. M. Schulson, “The Structure and Mechanical Behavior of Ice,” journal of The Minerals, Metals & Materials Society,51 (2) , pp. 21-27, 1999.
    [23]林彥亨,複材結構之脫層分析,碩士論文,國立成功大學,2003。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE