簡易檢索 / 詳目顯示

研究生: 林彥亨
Lin, Yen-Heng
論文名稱: 具降-升壓功因調控前級之切換式磁阻馬達驅動系統
A SWITCHED-RELUCTANCE MOTOR DRIVE WITH BUCK-BOOST POWER FACTOR CORRECTION FRONT-END
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 130
中文關鍵詞: 切換式磁阻馬達智慧型功率模組前級轉換器降-升壓轉換器升壓切換式整流器功因校正電流控制速度控制數位訊號處理器數位控制
外文關鍵詞: Switched-reluctance motor, intelligent power module, front-end converter, buck-boost converter, oltage boosting, switch-mode rectifier, power factor correction, current control, speed control, DSP, digital control
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研製以數位訊號處理器為主具有降-升壓切換式整流器前級之切換式磁阻馬達驅動系統。首先,探究切換式磁阻馬達驅動系統之基本實務以瞭解其結構特徵、轉換器電路、驅動控制以及一些影響其性能之關鍵事務。其次,建構一具二極體整流器前級之切換式磁阻馬達驅動系統,利用兩個市售之三相智慧型功率模組組成切換式磁阻馬達之非對稱橋式轉換器。藉由適當設計之換相時刻移位、電流控制以及速度控制機構,所組建之馬達驅動系統具有良好之操控性能。
    接著在電力品質控制方面,應用降-升壓切換式整流器前級建立由交流源入電建立平穩及可升壓之直流鏈電壓。由於此類切換式整流器固有之電壓轉換特性,藉由適當之控制設計可得良好之直流電壓輸出及交流入電電力品質,因而獲得更優越之切換式磁阻馬達線圈電流與速度響應特性。為促使控制機構之小型化,兩級電力電路之數位控制法則以一共同之數位訊號處理器實驗之。最後,本論文從事所建具切換式整流器前級切換式磁阻馬達驅動系統之總體操控效能實測評定,包含換相前移效應、直流鏈電壓升壓、直流鏈電壓調控及交流入電品質等。


    A digital signal processor (DSP) based switched-reluctance motor (SRM) drive with buck-boost switch-mode rectifier (SMR) front-end is designed and implemented in this thesis. First, the basic issues of a SRM drive are explored to comprehend its structural features, converter circuits, driving control, and some key affairs affecting its performance. Then a standard diode rectifier-fed SRM drive is established. Two off-the-shelf three-phase intelligent power modules (IPMs) are employed to construct the SRM asymmetric bridge converter. Satisfactory driving performance is yielded by properly designing its commutation, current control and speed control schemes.
    Next in power quality control, a buck-boost SMR is used as a front-end for establishing well-regulated and boostable DC-link voltage for the SRM drive from utility grid. Owing to the inherent voltage transfer feasibility possessed by this type of SMR, good DC output voltage and AC input power quality control performances are obtained via proper control scheme design. It follows that the improved SRM winding current and speed responses are yielded accordingly. For achieving the miniaturization of control environment, the control algorithms of two power stages are digitally realized using a common DSP. Finally, the performance evaluation for the whole SMR-fed SRM drive is conducted experimentally. The evaluated characteristics include the effects of commutation advanced shift, the DC-link voltage boosting, the DC-link voltage regulation control, and the AC line drawn power quality.

    ACKNOWLEDGEMENT ABSTRACT LIST OF CONTENTS LIST OF FIGURES LIST OF TABLES Chapter 1 INTRODUCTION Chapter 2 INTRODUCTORY SWITCHED-RELUCTANCE MOTOR DRIVE 2.1 Introduction 2.2 Motor Structure and Operation Principle of SRM 2.3 Some Commonly Used SRM Converters 2.4 SMR Front-End for SRM Drive 2.5 Physical Modeling 2.6 Estimation of Equivalent Circuit and Dynamic Model Parameters Chapter 3 EXPERIMENTAL DSP-BASED SWITCHED-RELUCTANCE MOTOR DRIVE 3.1 Introduction 3.2 Comparative Features of Some Typical DSPs 3.3 DSP-based SRM Drive 3.4 Some Measured Results Chapter 4 DEVELOPMENT OF BUCK-BOOST SWITCH-MODE RECTIFIER 4.1 Introduction 4.2 Some Existing Single-Phase SMRs 4.3 Power Circuit 4.4 Control Scheme 4.5 Experimental and Simulated Performance Evaluation Chapter 5 ESTABLISHMENT OF A SWITCHED-RELUCTANCE MOTOR DRIVE WITH BUCK-BOOST SWITCH-MODE RECTIFIER FRONT-END 5.1 Introduction 5.2 System Configuration of the SMR-fed SRM Drive 5.3 System Configuration of the Rectifier-fed SRM Drive 5.4 Measured Results Chapter 6 CONCLUSIONS REFERENCES

    A. Fundamentals of SRM
    [1]T. J. E. Miller, Switched reluctance motors and their control, Clarendon Press,
    Oxford, 1993.
    [2]R. Krishnan, Switched reluctance motor drives: modeling, simulation, analysis, design, and applications, New York: CRC Press, 2001.
    [3]H. C. Lovatt, M. L. McClelland and J. M. Stephenson, “Comparative performance of singly salient reluctance, switched reluctance and induction motors,” IET Proc. Elect. Mach. and Drives, pp. 361-365, 1997.
    [4]J. Li, X. Song and Y. Cho, “Comparison of 12/8 and 6/4 switched reluctance motor: noise and vibration aspects,” IEEE Trans. Magnetics, vol. 44, no. 11, pp. 4131-4134, 2008.
    [5]P. Rafajdus, V. Hrabovcova and P. Hudak, “Investigation of losses and efficiency in switched reluctance motor,” in Proc. EPE-PEMC, 2006, pp. 296-301.
    [6]A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 31, no. 5, pp. 1079-1087, 1995.
    [7]T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
    [8]J. Hur, G. H. Kang, J. Y. Lee, J. P. Hong and B. K. Lee, “Design and optimization of high torque, low ripple switched reluctance motor with flux barrier for direct drive,” in Proc. IAS, 2004, vol. 1, pp.401-408.
    B. Converters and Voltage Boosting Circuits
    [9]S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1047, 1991.
    [10]A. M. Hava, V. Blasko and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, 1992.
    [11]S. Mir, I. Husain and M.E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 912-921, 1997.
    [12]V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002.
    [13]A. Dahmane, F. Meebody and F. M. Sargos, “A novel boost capacitor circuit to enhance the performance of the switched reluctance motor,” in Proc. IEEE PESC, 2001, vol. 2, pp. 844-849.
    [14]K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IET Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
    [15]S. Chan, “Performance enhancement of single-phase switched reluctance motor by DC link voltage boosting,” IEE Proc. Elect. Power Appl., 1993, vol. 140, no. 5, pp. 316-322.
    [16]M. Barnes and C. Pollock, “Forward converters for dual voltage switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 16, no. 1, pp. 83-91, 2001.
    [17]J. Y. Chai, “Development and control of a switched reluctance motor drive with power factor correction front-end” Ph.D. dissertation, Department of Electrical Engineering National Tsing Hua University, ROC, 2008.
    [18]H. L. Huy, K. Slimani and P. Viarouge, “A current-controlled quasi-resonant converter for switched-reluctance motor,” IEEE Trans. Ind. Electron., vol. 38, no. 5, pp.355-362, 1991.
    [19]Y. Murai, J. Cheng and M. Yoshida, “New soft-switched reluctance motor drive circuit,” in Proc. IEEE Ind. Appl., 1997, vol. 1, pp. 676-681.
    [20]K. T. Chau, T. W. Ching, C. C. Chan and M. S. W. Chan, “A novel zero-current soft-switching converter for switched reluctance motor drives,” in Proc. IEEE IECON, 1998, vol. 2, pp. 893-898.
    [21]C. K. Pan, “A dsp-based soft-switching converter-fed switched reluctance motor drive,” Master Thesis, Department of Electrical Engineering National Tsing Hua University, ROC, 2003.
    C. Power Semiconductor Modules
    [22]FCAS50SN60 smart power module for SRM, www.fairchildsemi.com/ds/FC/ /FCAS50SN60.pdf
    [23]FCAS20DN60BB smart power module for SRM, www.fairchildsemi.com/ds/ FC/FCAS20DN60BB.pdf
    [24]Y. C. Kim, Y. H. Yoon, B. K. Lee, J. Hur and C. Y. Won, “A new cost effective SRM drive using commercial 6-switch IGBT modules,” in Proc. PESC, 2006, pp. 1-7.
    [25]Y. C. Kim, Y. H. Yoon, B. K. Lee, H. S. Kim and C. Y. Won, “Control algorithm for 4-switch converter of 3-phase SRM,” in Proc. PESC, 2006, pp. 1-5.
    [26]A. C. Oliveira, C. B. Jacobina, A. M. N. Lima and F. Salvadori, “Startup and fault tolerance of the SRM drive with three-phase bridge inverter,” in Proc. PESC, 2005, pp. 714-719.
    [27]H. Goto, H. J. Guo, O. Ichinokura, “A novel drive method for switched reluctance using three-phase power modules,” in Proc. EPE-PEMC, 2006, pp. 1027-1031.
    [28]Z. Grbo, S. Vukosavic and E. Levi, “A novel power inverter for switched reluctance motor drives,” IEEE Elec. Enger., vol. 18, no. 3, pp. 453-465, 2005.
    [29]M. J. Lin, “Development of a switched reluctance motor drive with voltage boosting and PFC charging capabilities using three-phase power modules,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2008.
    D. Modeling and Parameter Estimation of SRM
    [30]N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Appl., vol. 36, no. 3, pp. 714-722, 2000.
    [31]B. P. Loop and S. D. Sudhoff, “Switched reluctance machine model using inverse inductance characterization,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 743-751, 2003.
    [32]D. N. Essah and S. D. Sudhoff, “An improved analytical model for the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 349-356, 2003.
    [33]B. C. Mecrow, C. Weiner and A. C. Clothier, “The modeling of switched reluctance machines with magnetically coupled windings,” IEEE Trans. Ind. Appl., vol. 37, no. 6, pp. 1675-1683, 2001.
    [34]F. R. Salmasi and B. Fahimi, “Modeling switched-reluctance machines by decomposition of double magnetic saliencies,” IEEE Trans. Magnetics, vol. 40, no. 3, pp. 1556-1561, 2004.
    [35]O. Ichinokura, T. Onda, M. Kimura, T. Watanabe, T. Yanada and H. J. Guo, “Analysis of dynamic characteristics of switched reluctance motor based on SPICE,” IEEE Trans. Magnetics, vol. 34, pp. 2147-2149, 1998.
    [36]K. N. Srinivas and R. Arumugam, “Dynamic characterization of switched reluctance motor by computer-aided design and electromagnetic transient simulation,” IEEE Trans. Magnetics, vol. 39, no. 3, pp.1806-1812, 2003.
    [37]A. K. Jain and N. Mohan, “Dynamic modeling, experimental characterization, and Verification for SRM Operation With Simultaneous Two-Phase Excitation,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1238-1249, 2006.
    [38]A. D. Cheok and N. Ertugrul, “Use of fuzzy logic for modeling, estimation, and prediction in switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 46, no. 6, pp. 1207-1224, 1999.
    [39]W. Lu, A. Keyhani and A. Fardoun, “Neural network-based modeling and parameter identification of switched reluctance motors,” IEEE Trans. Energy Convers., vol. 18, no 2, pp. 284-290, 2003.
    [40]Z. Lin, D. S. Reay, B. W. Williams and X. He, “Online modeling for switched Reluctance Motors Using B-Spline Neural Networks,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3317-3322, 2007.
    E. Current Control
    [41]F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999.
    [42]R. B. Inderka, M. Menne, R. W. A. A. and D. Doncker, “Control of switched reluctance drives for electric vehicle applications” IEEE Trans. Ind. Electron., vol. 49, pp. 48-53, 2002.
    [43]S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
    [44]P. Srinivas and P. V. N. Prasad, “Voltage control and hysteresis current control of a 8/6 switched reluctance motor,” in Proc. ICEMS, 2007, pp. 1557-1562.
    [45]G. Gallegos-Lopez, K. Rajashekara, “Peak PWM current control of switched reluctance and AC machines” in Proc. Ind. Appl. Conf., 2002, vol. 2, pp. 1212-1218.
    [46]M. T. Alrifai, J. H. Chow and D. A. Torrey, “Practical application of backstepping nonlinear current control to a switched-reluctance motor,” in Proc. American Control, 2000, vol. 1, pp. 594-599.
    [47]L. O. A. P. Henriques, P. J. C. Branco, L. G. B. Rolim and W. I. Suemitsu, “Proposition of an off line learning current modulation for torque-ripple reduction in switched reluctance motors: design and experimental evaluation,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 665-676, 2002.
    [48]S. K. Sahoo, S. K. Panda and J. X. Xu, “Direct torque controller for switched reluctance motor drive using sliding mode control,” in Proc. PEDS, 2005, vol. 2, pp. 1129-1134.
    [49]R. Jeyabharath, P. Veena and M. Rajaram, “A novel DTC strategy of torque and flux control for switched reluctance motor drive,” in Proc. PEDS, 2006, pp. 1-5.
    [50]S. K. Sahoo, S. K. Panda and J. X. Xu, “Application of spatial iterative learning Control for Direct Torque Control of Switched Reluctance Motor Drive,” in Proc. IEEE PES, 2007, pp. 1-7.
    F. Speed Control
    [51]M. T. Alrifai, J. H. Chow and D. A. Torrey, “Backstepping nonlinear speed controller for switched-reluctance motors,” IET Proc. Elect. Power Appl., vol. 150, no. 2, pp. 193-200, 2003.
    [52]G. John and A. R. Eastham, “Speed control of switched reluctance motor using sliding mode control strategy,” in Proc. Ind. Appl. Conf., 1995, vol. 1, pp. 263-270.
    [53]T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
    [54]K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor,” IET Proc. Electric Power Appl., vol. 148, no. 4, pp. 345-352, 2001.
    [55]C. Lucas, M. M. Shanehchi, P. Asadi and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE Ind. Appl. Conf., 2000, vol. 3, pp. 1573-1577.
    [56]J. Y. Seo, H. R. Cha, H. Y. Yang, J. C. Seo, K. H. Kim, Y. C. Lim and D. H. Jang, “Speed control method for switched reluctance motor drive using self-tuning of switching angle,” in Proc. IEEE International Symposium on Ind. Electron., 2001, vol. 2, pp. 811-815.
    [57]S. K. Panda, X. M. Zhu and P. K. Dash, “Fuzzy gain scheduled PI speed controller for switched reluctance motor drive,” in Proc. IEEE IECON, 1997, vol. 3, pp. 989-994.
    [58]B. Singh, V. K. Sharma and S. S. Murthy, “Performance analysis of adaptive fuzzy logic controller for switched reluctance motor drive system,” in Proc. IEEE IAS, 1998, vol. 1, pp. 571-579.
    [59]K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
    G. Commutation Tuning
    [60]D. A. Torrey and J. H. Lang, “Optimal-efficiency excitation of variable-reluctance motor drives,” IEE Proc. Elect. Power Appl., vol. 138, no. 1, pp. 1-14,1991.
    [61]P. C. Kjaer, P. Nielsen, L. Andersen and F. Blaabjerg, “A new energy optimizing control strategy for switched reluctance motors,” IEEE Trans. Ind. Appl., vol. 31, no. 5, pp. 1088-1095, 1995.
    [62]Y. Sozer, D. A. Torrey, “Optimal turn-off angle control in the face of automatic turn-on angle control for switched-reluctance motors,” IET Proc. Electric Power Appl., vol. 1, no. 3, pp. 395-401, 2007.
    [63]C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
    [64]M. Rodrigues, P. J. Costa Branco and W. Suemitsu, “Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, no. 3, pp. 711-715, 2001.
    [65]J. J. Gribble, P. C. Kjaer and T. J. E. Miller, “Optimal commutation in average torque control of switched reluctance motors,” IEE Proc. Elect. Power Appl., 1999, vol. 146, no. 1, pp. 2-10.
    [66]R. Orthmann and H. P. Schoner, “Turn-off angle control of switched reluctance motors for optimum torque output,” in Proc. Fifth European Conf. on Power Electron. and Appl., 1993, vol. 6, pp. 20-25.
    [67]B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen and I. Panahi, “Self-tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” in Proc. IEEE APEC, 1998, vol. 2, pp. 778-783.
    [68]K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
    H. Single-Phase Switch-Mode Rectifiers
    [69]W. Huai and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” in Proc. IEEE Southeastcon, 1998, pp. 348-353.
    [70]B. Singh, B. N. Singh, A. Chandra, K. AL-Haddada, A. Pandey and D. P. Kothar. “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, pp. 962-981, 2003.
    [71]O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, pp. 749-755, 2003.
    [72]K. Matsui, I. Yamamoto, T. Kishi, M. Hasegawa, H. Mori and F. Ueda, “A comparison of various buck-boost converters and their application to PFC,” in Proc. IEEE IECON, 2002, vol. 1, pp. 30-36.
    [73]J. Chen, D. Maksimovic and R. Erickson, “A new low-stress buck-boost converter for universal-input PPC applications,” in Proc. IEEE APEC, 2001, vol. 1, pp.343-349.
    [74]J. Chen, D. Maksimovic and R. Erickson, “Buck-boost PWM converters having two independently controlled switches,” in Proc. IEEE PESC, 2001, vol. 2, pp. 736-741.
    [75]A. R. Prasad, P. D. Ziogas and S. Manias, “A new active power factor correction method for single-phase buck-boost ac-dc converter,” in Proc. IEEE APEC, 1992, pp. 841-820.
    [76]Y. Nishida, S. Motegi and A. Maeda, “A single-phase buck-boost AC-to-DC converter with high-quality input and output waveforms,” in Proc. IEEE ISIE, 1995, vol. 1, pp. 433-438.
    [77]O. Lopez, L. Garcia de Vicuna, M. Castilla, J. Matas and M. Lopez, “Sliding-mode-control design of a high-power-factor buck-boost rectifier,” IEEE Trans. Ind. Electron., vol. 46, pp. 604-612, 1999.
    [78]B. S. Lee and R. Krishnan, “A variable voltage converter topology for permanent-magnet brushless DC motor drives using buck-boost front-end power stage,” in Proc. IEEE ISIE, 1999, vol. 2, pp. 689-694.
    [79]N. P. Papanikolaou and E. C. Tatakis, “Minimisation of power losses in PFC flyback converters operating in the continuous conduction mode,” in Proc. IEE-Electr. Power Appl., 2002, vol. 149, no. 4, pp.283-291.
    [80]H. Matsuo, H. Watanabe, F. Kurokawa and T. Lishan, “Analysis of the novel soft-switching buck-boost type AC-DC converter using magnetic coupling,” in Proc. IEEE PESC, 2000, vol. 3, pp. 1239-1246.
    [81]C. M. Liaw and T. H. Chen, “A soft-switching mode rectifier with power factor correction and high frequency transformer link,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 644-654, 2000.
    [82]H. Y. Kanaan, and K. Al-Haddad, “A comparative analysis of nonlinear current control schemes applied to a SEPIC power factor corrector,” in Proc. IEEE IECON, 2005, pp. 1104-1109.
    [83]C. M. Liaw, T. H. Chen and W. L. Lin, “Dynamic modeling and control of a step up/down switching-mode rectifier,” IET Proc. Electric Power Appl., 1999, vol. 146, pp. 317-324.
    [84]J. Chen, A. Prodic, R.W. Erickson and D. Maksimovic, “Predictive digital current programmed control,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 411-419, 2003.
    [85]P. Mattavelli, G. Spiazzi and P. Tenti, “Predictive digital control of power factor preregulators with input voltage estimation using disturbance observers,” IEEE Trans. Power Electron., vol. 20, pp. 140-147, 2005.
    [86]G. K. Andersen and F. Blaabjerg, “Current programmed control of a single-phase two-switch buck-boost power factor correction circuit,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 263-271, 2006.
    [87]H. C. Chen, S. H. Li and C. M. Liaw, “Switch-mode rectifier with digital robust compensation and current waveform controls,” IEEE Trans. Ind. Electron., vol. 19, pp. 560-566, 2004.
    I. Sensorless control of SRM
    [88]M. Ehsani and B. Fahimi, “Elimination of position sensors in switched reluctance motor drives: state of the art and future trends,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 40-47, 2002.
    [89]M. Ehsani, I. Husain, and A. B. Kulkarni, “Elimination of discrete position sensor and current sensor in switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 28, pp. 128–135, 1992.
    [90]G. Suresh, B. Fahimi, and M. Ehsani, “Improvement of the accuracyand speed range in sensorless control of switched reluctance motors,” in Proc. IEEE APEC, 1998, pp. 770-777.
    [91]P. Bishop, A. Khalil and I. Husain, “Low level amplitude modulation based sensorless operation of a switched reluctance motor,” in Proc. IEEE PESC, 2004, vol. 5, pp. 3347-3352.
    [92]E. Kayikci, M. C. Harke and R. D. Lorenz, “Load invariant sensorless control of a SRM drive using high frequency signal injection,” in Proc. IEEE IAS, 2004, pp. 1632-1637.
    [93]S. M. Ahmed and P. W. Lefley, “A new simplified sensorless control method for a single phase SR motor using HF signal injection” in Proc. IEEE UPEC, 2007, pp. 1075-1078.
    [94]D. H. Lee, T. H. Kim and J. W. Ahn, ”A simplified novel sensorless Control of SRM,” in Proc. IEEE IAS, 2006, vol. 4, pp. 2001-2005.
    [95]T. Wakasa, H. J. Guo. and O. Ichinokura, “A simple position sensorless driving system of SRM based on new digital PLL technique,” in Proc. IEEE IECON, 2002, pp. 502-507.
    [96]H. J. Guo,W. B. Lee, T. Watanabe and O. Ichinokura, “An improved sensorless driving method of switched reluctance motors using impressed voltage pulse,” in Proc. IEEE PCC, 2002, pp. 977-980.
    [97]J. Bekiesch and G. Schroder, “Sensorless operation of the switched reluctance machine,” in Proc. IEEE EPE, 2007, pp. 1-8.
    [98]G. Gallegos-lopez, P. C. Kjaer and T. J. E. Miller, “High-grade position estimation for SRM drives using flux linkage current correction model,” IEEE Trans. Ind. Appl., vol. 35, no. 4, pp. 859-869, 1999.
    [99]S. Saha, K. Ochiai, T. Kosaka, N. Matsui and Y. Takeda, ”Developing a sensorless approach for switched reluctance motors from a new analytical model,” in Proc. IEEE IAS, 1999, vol. 1, pp. 525-532.
    [100]G. Hongwei, F. R. Salmasi and M. Ehsani, “Inductance model-based sensorless control of the switched reluctance motor drive at low speed,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1568-1573, 1999.
    [101]A. D. Cheok and N. Ertugrul, “High robustness and reliability of fuzzy logic based position estimation for sensorless switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 15, no. 2, pp. 319-334, 2000.
    [102]E. Mese and D. A. Torrey, “An approach for sensorless position estimation for switched reluctance motors using artifical neural networks,” IEEE Trans. Power Electron., vol. 17, no. 1, pp. 66-75, 2002.
    [103]C. A. Hudson, N. S. Lobo and R. Krishnan, “Sensorless control of single switch based switched reluctance motor drive using neural network,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 2349-2354, 2008.
    J. Others
    [104]R. W. Erickson and D. Maksimovic, Fundamentals of power Electronics, 2nd ed., Kluwer Academic Publishers, Norwell Massachusetts, 2001.
    [105]H. C. Chang and C. M. Liaw, “On the establishment of three-phase power module based converter and its control for switched-reluctance motor,” Proc. of 28th National Symposium on Electrical Power Engineering, ROC, Taiwan, pp. 1406-1411, 2008.
    [106]H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage boosting and PFC charging capabilities,” IEEE Trans. Vehicular Technology, Accepted, 2009.
    [107]Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE