研究生: |
江承恩 Chiang, Cheng-En |
---|---|
論文名稱: |
三維幹細胞球體衍生之多功能基質 支架系統於促進組織再生之應用 A Versatile 3D Stem Cell Spheroid-derived Matrix Scaffold System for Promoting Tissue Regeneration |
指導教授: |
黃玠誠
Huang, Chieh-Cheng |
口試委員: |
黃振煌
Huang, Jen-Huang 陳盈潔 Chen, Ying-Chieh 許瓈文 Hsu, Li-Wen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 生物醫學工程研究所 Institute of Biomedical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 58 |
中文關鍵詞: | 三維細胞球體 、去細胞 、多功能基質支架 、間葉幹細胞 、大分子擁擠現象 |
外文關鍵詞: | 3D cell spheroid, decellularization, versatile matrix scaffold, mesenchymal stem cells, macromolecular crowding |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,組織工程學於器官損傷及功能修復為重要的研究方向,許多研究會結合支架、細胞及生長因子去進行組織修復,目的為提供細胞良好生長環境,進而恢復受損區域之功能性。天然支架中之生物支架多為利用生物體的組織或器官進行移植,但於臨床上若使用異種生物之組織器官移植會造成免疫排斥或細菌感染之問題,又同種生物之組織器官相對稀少且珍貴,因此發展出去細胞之方法,將取得的異種生物組織器官進行去細胞留下細胞外基質支架,以補足同種稀少的問題。然而移植後雖然擁有良好的生物相容性,但去細胞過程有細菌感染的可能,因此出現無菌的細胞培養再去細胞之方法製備支架。許多文獻指出,間葉幹細胞能夠分泌大量的細胞外基質以及細胞激素,藉由培養間葉幹細胞,並進行去細胞後,取得細胞所分泌之細胞外基質支架,可用於培養病患之目標細胞,進而治療受損區域,然而傳統方式製備支架耗時長,無法及時給予所需之去細胞支架。為了解決製備耗時長之問題,本研究所使用甲基纖維素水膠系統使間葉幹細胞自我貼附並沉降細胞外基質,短時間便能製作完細胞球,並且利用界面活性劑之方式進行去細胞,以定量方式確認DNA之低殘留,並且以西方墨點法、免疫螢光染色等方式確認細胞外基質及細胞激素之保存。此外,本研究使用大分子擁擠現象原理,增加間葉幹細胞之細胞外基質沉降及細胞激素含量。體外實驗部分,本研究利用共培養之方式觀察去細胞支架對於細胞增殖、細胞活性之提升;而利用去細胞支架上之黏附點位,可使間葉幹細胞及內皮細胞貼附於細胞支架並且使細胞利用基質成分,造成支架之形狀改變。體內實驗部分,本研究將去細胞支架與Matrigel移植進裸鼠體內,觀察到宿主細胞會遷徙至去細胞支架上,說明支架能提供宿主細胞生長環境。
Scaffolds for tissue engineering aim to mimic the native extracellular matrix (ECM) that provides both physical support and biochemical cues to modulate multiple cell behaviors. In current tissue engineering research, however, the majority of biomaterials are employed as scaffolds merely because of their structural and mechanical properties, thus failing to deliver the essential niche for encouraging tissue regeneration. In this study, we developed a mesenchymal stem cell (MSC)-derived three-dimensional (3D) matrix that contains precise matrix composition and abundant inherent growth factors as a bioactive tissue-engineering scaffold system that can closely recapitulate the native ECM. MSCs are well known to modulate multiple regenerative-relevant cell behaviors by their active paracrine signaling, which can be further enhanced after assembly into 3D cell spheroids. Additionally, artificial niche established by macromolecular crowding effect was applied to harness the deposition of matrix and soluble factors. Moreover, the protocol of decellularization was optimized to eliminate intracellular materials while maximizing the preservation of 3D matrix structure and the inherent bioactive compositions. Our in vitro results demonstrated that the 3D MSC spheroid-derived matrix effectively served as bioactive scaffolds for cell adhesion and proliferation. After subcutaneous transplantation, the fabricated ECM scaffolds could recruit host cells and promote local vascularization. We anticipate that the developed 3D MSC spheroid-derived ECM scaffold system may potentially promote tissue repair by engineering a proregenerative microenvironment.
1. Cheung, H.Y., et al., A critical review on polymer-based bio-engineered materials for scaffold development. Composites Part B-Engineering, 2007. 38(3): p. 291-300.
2. Causa, F., P.A. Netti, and L. Ambrosio, A multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue. Biomaterials, 2007. 28(34): p. 5093-9.
3. Gloria, A., R. De Santis, and L. Ambrosio, Polymer-based composite scaffolds for tissue engineering. J Appl Biomater Biomech, 2010. 8(2): p. 57-67.
4. Song, J.J. and H.C. Ott, Organ engineering based on decellularized matrix scaffolds. Trends Mol Med, 2011. 17(8): p. 424-32.
5. Luttikhuizen, D.T., M.C. Harmsen, and M.J. Van Luyn, Cellular and molecular dynamics in the foreign body reaction. Tissue Eng, 2006. 12(7): p. 1955-70.
6. Hussey, G.S., J.L. Dziki, and S.F. Badylak, Extracellular matrix-based materials for regenerative medicine. Nature Reviews Materials, 2018. 3(7): p. 159-173.
7. Agmon, G. and K.L. Christman, Controlling stem cell behavior with decellularized extracellular matrix scaffolds. Curr Opin Solid State Mater Sci, 2016. 20(4): p. 193-201.
8. Kumar, P., et al., Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies. Sci Rep, 2015. 5: p. 8729.
9. Theocharis, A.D., et al., Extracellular matrix structure. Adv Drug Deliv Rev, 2016. 97: p. 4-27.
10. Frantz, C., K.M. Stewart, and V.M. Weaver, The extracellular matrix at a glance. J Cell Sci, 2010. 123(Pt 24): p. 4195-200.
11. Yan, Y., et al., Differential effects of acellular embryonic matrices on pluripotent stem cell expansion and neural differentiation. Biomaterials, 2015. 73: p. 231-42.
12. Prewitz, M.C., et al., Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments. Nature Methods, 2013. 10(8): p. 788-+.
13. Sun, Y., et al., Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix. Faseb Journal, 2011. 25(5): p. 1474-1485.
14. Di Cio, S., et al., Differential integrin expression regulates cell sensing of the matrix nanoscale geometry. Acta Biomater, 2017. 50: p. 280-292.
15. Chen, S., N. Kawazoe, and G. Chen, Biomimetic Assembly of Vascular Endothelial Cells and Muscle Cells in Microgrooved Collagen Porous Scaffolds. Tissue Eng Part C Methods, 2017. 23(6): p. 367-376.
16. Qiu, Y., et al., A role for matrix stiffness in the regulation of cardiac side population cell function. Am J Physiol Heart Circ Physiol, 2015. 308(9): p. H990-7.
17. Jang, J., et al., Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials, 2018. 156: p. 88-106.
18. Murphy, S.V. and A. Atala, 3D bioprinting of tissues and organs. Nat Biotechnol, 2014. 32(8): p. 773-85.
19. Ji, S. and M. Guvendiren, Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs. Front Bioeng Biotechnol, 2017. 5: p. 23.
20. Shah, A.M., H. Jung, and S. Skirboll, Materials used in cranioplasty: a history and analysis. Neurosurg Focus, 2014. 36(4): p. E19.
21. Zopf, D.A., et al., Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med, 2013. 368(21): p. 2043-5.
22. Hinton, T.J., et al., Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv, 2015. 1(9): p. e1500758.
23. Lee, J.S., et al., Liver extracellular matrix providing dual functions of two-dimensional substrate coating and three-dimensional injectable hydrogel platform for liver tissue engineering. Biomacromolecules, 2014. 15(1): p. 206-18.
24. Drury, J.L. and D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003. 24(24): p. 4337-51.
25. Geckil, H., et al., Engineering hydrogels as extracellular matrix mimics. Nanomedicine (Lond), 2010. 5(3): p. 469-84.
26. Vega, S.L., M.Y. Kwon, and J.A. Burdick, Recent advances in hydrogels for cartilage tissue engineering. Eur Cell Mater, 2017. 33: p. 59-75.
27. Brigham, M.D., et al., Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks. Tissue Eng Part A, 2009. 15(7): p. 1645-53.
28. Kleinman, H.K. and G.R. Martin, Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol, 2005. 15(5): p. 378-86.
29. Wu, Y., et al., Implantation of Brain-Derived Extracellular Matrix Enhances Neurological Recovery after Traumatic Brain Injury. Cell Transplant, 2017. 26(7): p. 1224-1234.
30. Ghuman, H., et al., Long-term retention of ECM hydrogel after implantation into a sub-acute stroke cavity reduces lesion volume. Acta Biomater, 2017. 63: p. 50-63.
31. Massensini, A.R., et al., Concentration-dependent rheological properties of ECM hydrogel for intracerebral delivery to a stroke cavity. Acta Biomater, 2015. 27: p. 116-130.
32. Paduano, F., et al., Odontogenic Differentiation of Human Dental Pulp Stem Cells on Hydrogel Scaffolds Derived from Decellularized Bone Extracellular Matrix and Collagen Type I. PLoS One, 2016. 11(2): p. e0148225.
33. Keane, T.J., et al., Preparation and characterization of a biologic scaffold and hydrogel derived from colonic mucosa. J Biomed Mater Res B Appl Biomater, 2017. 105(2): p. 291-306.
34. Wu, J., et al., An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration. Acta Biomater, 2015. 16: p. 49-59.
35. Ungerleider, J.L., et al., Extracellular Matrix Hydrogel Promotes Tissue Remodeling, Arteriogenesis, and Perfusion in a Rat Hindlimb Ischemia Model. JACC Basic Transl Sci, 2016. 1(1-2): p. 32-44.
36. Spang, M.T. and K.L. Christman, Extracellular matrix hydrogel therapies: In vivo applications and development. Acta Biomater, 2018. 68: p. 1-14.
37. Roth, S.P., et al., Automated freeze-thaw cycles for decellularization of tendon tissue - a pilot study. BMC Biotechnol, 2017. 17(1): p. 13.
38. Badylak, S.F., D. Taylor, and K. Uygun, Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng, 2011. 13: p. 27-53.
39. Seif-Naraghi, S.B., et al., Injectable extracellular matrix derived hydrogel provides a platform for enhanced retention and delivery of a heparin-binding growth factor. Acta Biomater, 2012. 8(10): p. 3695-703.
40. Badylak, S.F., The extracellular matrix as a biologic scaffold material. Biomaterials, 2007. 28(25): p. 3587-93.
41. Poel, W.E., Preparation of Acellular Homogenates From Muscle Samples. Science, 1948. 108(2806): p. 390-1.
42. Xing, Q., et al., Decellularization of fibroblast cell sheets for natural extracellular matrix scaffold preparation. Tissue Eng Part C Methods, 2015. 21(1): p. 77-87.
43. Keane, T.J., I.T. Swinehart, and S.F. Badylak, Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods, 2015. 84: p. 25-34.
44. Gilpin, A. and Y. Yang, Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. Biomed Res Int, 2017. 2017: p. 9831534.
45. Jorba, I., et al., Probing Micromechanical Properties of the Extracellular Matrix of Soft Tissues by Atomic Force Microscopy. J Cell Physiol, 2017. 232(1): p. 19-26.
46. Elder, B.D., D.H. Kim, and K.A. Athanasiou, Developing an articular cartilage decellularization process toward facet joint cartilage replacement. Neurosurgery, 2010. 66(4): p. 722-7; discussion 727.
47. Reing, J.E., et al., The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials, 2010. 31(33): p. 8626-33.
48. Zhou, J., et al., Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials, 2010. 31(9): p. 2549-54.
49. Ng, C.P., et al., Enhanced ex vivo expansion of adult mesenchymal stem cells by fetal mesenchymal stem cell ECM. Biomaterials, 2014. 35(13): p. 4046-4057.
50. Sullivan, D.C., et al., Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials, 2012. 33(31): p. 7756-64.
51. Mendoza-Novelo, B., et al., Decellularization of pericardial tissue and its impact on tensile viscoelasticity and glycosaminoglycan content. Acta Biomater, 2011. 7(3): p. 1241-8.
52. Jiang, W.C., et al., Cryo-chemical decellularization of the whole liver for mesenchymal stem cells-based functional hepatic tissue engineering. Biomaterials, 2014. 35(11): p. 3607-17.
53. Kajbafzadeh, A.M., et al., Determining the optimal decellularization and sterilization protocol for preparing a tissue scaffold of a human-sized liver tissue. Tissue Eng Part C Methods, 2013. 19(8): p. 642-51.
54. Parmaksiz, M., et al., Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Biomed Mater, 2016. 11(2): p. 022003.
55. Saldin, L.T., et al., Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomater, 2017. 49: p. 1-15.
56. Allman, A.J., et al., Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation, 2001. 71(11): p. 1631-40.
57. Keane, T.J., et al., Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials, 2012. 33(6): p. 1771-81.
58. Scarritt, M.E., N.C. Pashos, and B.A. Bunnell, A review of cellularization strategies for tissue engineering of whole organs. Front Bioeng Biotechnol, 2015. 3: p. 43.
59. Fitzpatrick, L.E. and T.C. McDevitt, Cell-derived matrices for tissue engineering and regenerative medicine applications. Biomater Sci, 2015. 3(1): p. 12-24.
60. Syedain, Z.H., et al., Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials, 2011. 32(3): p. 714-22.
61. Assuncao, M., et al., Macromolecular dextran sulfate facilitates extracellular matrix deposition by electrostatic interaction independent from a macromolecular crowding effect. Mater Sci Eng C Mater Biol Appl, 2020. 106: p. 110280.
62. Hillebrandt, K.H., et al., Strategies based on organ decellularization and recellularization. Transpl Int, 2019. 32(6): p. 571-585.
63. Robertson, M.J., et al., Optimizing recellularization of whole decellularized heart extracellular matrix. PLoS One, 2014. 9(2): p. e90406.
64. Chen, C., et al., Applying macromolecular crowding to enhance extracellular matrix deposition and its remodeling in vitro for tissue engineering and cell-based therapies. Adv Drug Deliv Rev, 2011. 63(4-5): p. 277-90.
65. Minton, A.P., The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem, 2001. 276(14): p. 10577-80.
66. Ellis, R.J., Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol, 2001. 11(1): p. 114-9.
67. Chen, C.Z., et al., The Scar-in-a-Jar: studying potential antifibrotic compounds from the epigenetic to extracellular level in a single well. Br J Pharmacol, 2009. 158(5): p. 1196-209.
68. Motoike, S., et al., Clumps of Mesenchymal Stem Cell/Extracellular Matrix Complexes Generated with Xeno-Free Conditions Facilitate Bone Regeneration via Direct and Indirect Osteogenesis. Int J Mol Sci, 2019. 20(16).
69. Fitzsimmons, R.E.B., et al., Mesenchymal Stromal/Stem Cells in Regenerative Medicine and Tissue Engineering. Stem Cells Int, 2018. 2018: p. 8031718.
70. Liang, X., et al., Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant, 2014. 23(9): p. 1045-59.
71. Maumus, M., C. Jorgensen, and D. Noel, Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes. Biochimie, 2013. 95(12): p. 2229-34.
72. Yancopoulos, G.D., et al., Vascular-specific growth factors and blood vessel formation. Nature, 2000. 407(6801): p. 242-8.
73. Liang, H.F., et al., Novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate as a pH-sensitive hydrogel. Biomacromolecules, 2004. 5(5): p. 1917-25.
74. Jeong, B., S.W. Kim, and Y.H. Bae, Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev, 2002. 54(1): p. 37-51.
75. Yang, M.J., et al., Novel method of forming human embryoid bodies in a polystyrene dish surface-coated with a temperature-responsive methylcellulose hydrogel. Biomacromolecules, 2007. 8(9): p. 2746-52.
76. Bott, K., et al., The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials, 2010. 31(32): p. 8454-64.
77. 游芷苹, 「可促進血管新生與抑制細胞凋亡之三維幹細胞球體於提昇β細胞移植存活率之應用」。碩士論文,國立清華大學生物醫學工程研究所,2019。https://hdl.handle.net/11296/746hxa。.
78. Chen, C.H., et al., Construction and characterization of fragmented mesenchymal-stem-cell sheets for intramuscular injection. Biomaterials, 2007. 28(31): p. 4643-51.
79. Castello-Cros, R. and E. Cukierman, Stromagenesis during tumorigenesis: characterization of tumor-associated fibroblasts and stroma-derived 3D matrices. Methods Mol Biol, 2009. 522: p. 275-305.
80. Chen, Y., et al., Validation of a PicoGreen-based DNA quantification integrated in an RNA extraction method for two-dimensional and three-dimensional cell cultures. Tissue Eng Part C Methods, 2012. 18(6): p. 444-52.
81. Xie, D., et al., Strategic Endothelial Cell Tube Formation Assay: Comparing Extracellular Matrix and Growth Factor Reduced Extracellular Matrix. J Vis Exp, 2016(114).
82. Marquez-Curtis, L.A., et al., Beyond membrane integrity: Assessing the functionality of human umbilical vein endothelial cells after cryopreservation. Cryobiology, 2016. 72(3): p. 183-90.